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Abstract. Fairness in terms of various sensitive or protected attributes
such as race, gender, age group, etc. has been a subject of great impor-
tance in the healthcare domain. Group fairness is considered as one of
the principal criteria. However, most of the prevailing mitigation tech-
niques emphasize on tuning the training algorithms while overlooking
the fact that the training data may possibly be the primary reason for
the biased outcomes. In this work, we address two sensitive attributes
(age group and gender) with empirical evaluations of systemic inflam-
matory response syndrome (SIRS) classification for a dataset extracted
from electronic health records (EHRs) for the essential task of improving
equity in outcomes. Machine learning (ML)-based technologies are pro-
gressively becoming prevalent in hospitals; therefore, our approach car-
ries out a demand for the frameworks to consider performance trade-offs
regarding sensitive patient attributes combined with model training and
permit organizations to utilize their ML resources in manners that are
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aware of potential fairness and equity issues. With the intended purpose
of fairness, we experiment with a number of strategies to reduce dispar-
ities in algorithmic performance with respect to gender and age group.
We leverage a sample and label balancing technique using weighted loss
along with adversarial learning for an observational cohort derived from
EHRs to introduce a “fair” SIRS classification model with minimized
discrepancy in error rates over different groups. We experimentally illus-
trate that our strategy has the ability to align the distribution of SIRS
classification outcomes for the models constructed from high-dimensional
EHR data across a number of groups simultaneously.

Keywords: Neural networks, adversarial Learning, fairness, bias, SIRS,
healthcare, EHR

1 Introduction

Machine learning (ML) can be utilized to identify statistical patterns from the
data that is produced by thousands of physicians and millions of patients. Deter-
mining statistical patterns is important to train computers to carry out specific
tasks with incredible efficiency from time to time, such as diagnosing eye diseases
in diabetic patients, to the extent of an experienced and knowledgeable special-
ist [1]. However, historical data might contain patterns of disparities regard-
ing health care. Therefore, these inequities can be perpetuated in a ML model
which was trained on those data. It is a significant task to promote fairness in
the healthcare domain. Therefore, the American Medical Association passed the
policy recommendations to “promote the development of thoughtfully designed,
high-quality, clinically validated health care AI (artificial or augmented intelli-
gence, such as machine learning) that identifies and takes steps to address bias
and avoids introducing or exacerbating health care disparities including when
testing or deploying new AI tools on vulnerable populations” [2].

In this work, we have focused on disparity in gender and age groups for the
diagnosis of Systemic inflammatory response syndrome (SIRS). It is defined as
an excessive defense response of the body to a noxious stressor e.g., infection,
acute inflammation, trauma, surgery, reperfusion, ischemia, etc. to localize and
subsequently terminate the external or endogenous cause of the insult. Profes-
sionals are usually led by SIRS identification criteria which were proposed in
1992 [3]. The advancement from sepsis to septic shock can increase the mortal-
ity rate significantly. Study [4] showed a 28-day/in-hospital mortality in serious
sepsis and septic shock of 10%-40% and 30%-60%, respectively. Fluid resuscita-
tion and early treatment with antibiotics were highly correlated with a higher
survival rate [5]. A number of studies [6–8] demonstrated the applicability of
Machine Learning algorithms to predict the diagnosis of a disease. The patients
in those studies were from different age groups and genders, and these categories
were not equally distributed most of the time – a fact that will indeed have an
impact on the classification result. Such misestimation causes considerable harm
to SIRS diagnosis in a sense that incorrect classification can endanger patients as
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a result of both over- or undertreatment leading to avoidable sepsis side effects
or incidents from unwanted treatments, respectively. It is our belief that the
future selection of patients can be benefited from a much better understanding
of the various patient subcategories for specific treatments.

A significant amount of attention has been drawn to fairness and bias in
ML and it has become a prominent area of research for the ML students, re-
searchers, and industry professionals [9]. To ensure a impartial future for AI, the
Ethics and AI communities have aspired to decrease biases in ML [1]. By utiliz-
ing data analytics, empirical research has been carried out to evaluate fairness
with respect to race groups [8]; yet, a very small number of works have focused
on enhancing fairness in healthcare from the AI viewpoint. This study proposes
techniques intended for investigating the fairness pertaining to the SIRS classi-
fication model regarding gender and age groups. Our experimental results are
based on the SIRS dataset provided by the Hanover Medical School. We suggest
approaches for enhancing group fairness at the time of both data processing and
model training stages despite retaining overall accuracy. Our experimental out-
comes show that: (1) Adversarial learning is effective since most marginalized
groups display more significant average enhancements compared to other groups
across all evaluation metrics, (2) In general, our method produces high scores
for fairness while causing only a slight decrease in the overall performance of
the classification, and (3) different groups require different model strategies for
optimal effectiveness.

The article is structured as follows. In the next Section 2, we provide the used
definitions of fairness and a brief literature review on various related works. We
describe our datasets and analysis in Section 3. Different strategies and weighted
loss are depicted in Section 4. In Section 5, we demonstrate the proposed adver-
sarial learning approach. Results analysis and discussion are provided in Section
6. Finally, we derive conclusions of the work in Section 7.

2 Related Works

2.1 Fair Prediction

In general, supervised learning can be utilized to approximate the conditional
distribution p(Y | X) for a function f(X) where N samples {xi, yi, zi}Ni=1 are
taken from a given distribution p(X,Y, Z). Usually, a vector representation X ∈
X = Rm of the medical history is extracted from the Electronic Health Records
(EHRs). A binary label Y ∈ Y = {0, 1} that represents the outcome observed
in the EHR for patient i, is used to obtain the outcome. Sensitive attributes,
for example, gender, race, or age, with k groups, is indicated by Z ∈ Z =
{0, ..., k − 1}. To render a prediction Ŷ ∈ {0, 1}, the output of the learned
function f(X) ∈ [0, 1] is thresholded with a value T .

Demographic parity [10] is one of the popular metrics to evaluate the fairness
of a classifier regarding a sensitive attribute Z. The demographic parity criterion
assesses the independence between the prediction Ŷ and Z, formalized as
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p(Ŷ | Z = Zi) = p(Ŷ | Z = Zj)∀Zi, Zj ∈ Z (1)

Nevertheless, optimizing a ML model for demographic parity is inadequate
for the prediction of clinical risk or diagnosis, as it may prevent the model
from contemplating pertinent clinical features affiliated with the outcome and
the sensitive attribute. Therefore, it can reduce the overall performance of the
model for all protected groups [9].

The equality of odds [11] is another metric for evaluating fairness where it
specifies that, for the given true label Y , prediction Ŷ is conditionally indepen-
dent of Z. Equality of odds is formally defined as

p(Ŷ | Z = Zi, Y = Yk) = p(Ŷ | Z = Zj , Y = Yk)

∀Zi, Zj ∈ Z;Yk ∈ Y
(2)

The definition states that if it is possible to accomplish equality of odds,
then both false negative rates (FNR) and false positive rates (FPR) will be
equal for a certain threshold T over all pairs of protected groups specified by Z.
Therefore, equality of odds is more suitable in a clinical background in contrast
to demographic parity [11].

2.2 Reducing the Impact of Algorithmic Bias

There are various strategies that can be utilized to reduce algorithmic bias. These
strategies can be designed and carried out in different phases of a usual ML
pipeline: during the construction of the dataset, model training, and inference
(i.e., prediction). Removing sensitive features from the training data during the
dataset construction phase is a simple and uncomplicated solution. However,
due to different feature-class correlations, prediction outcome inequity may still
be maintained. Poor model performance can also be observed as a result of
removing features directly [12]. Additional techniques to reduce biases during
the data construction phase aim to address imbalanced data related to predicted
class and group. Predicted group and class size can be balanced by updating
the loss function in terms of re-weighting every label and designating distinct
weights to training samples, respectively [13]. Nevertheless, even in the case
of balanced training data, ML models might still learn correlated information
regarding sensitive features like gender and race from the provided intermediate
representations [14]. Correlated information relating to sensitive features can
be removed from the intermediate representation which is fed as input for the
predictive models by utilizing adversarial learning [15,16]. A predictor (classifier)
and an adversarial network are trained concurrently during adversarial learning.
The primary goal of a predictor is typically to ensure that the intermediate
representations used by the model remain highly informative for the prediction
task. In contrast, an adversarial network’s purpose is to hinder the predictor’s
capability to anticipate sensitive features [17]. Thus, by eliminating the biased
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information concerning the sensitive features, a fair representation of model input
can be learned using adversarial learning. The mitigation of the bias in ML
can also be carried out at the inference phase. The main concept is to detect
and turn off the portions of the model, that have learned the sensitive features.
Therefore it eliminates the correlation between model output and those sensitive
features [17].

In this work, we will focus on data construction, and model training phases
for the mitigation of bias.

2.3 Different Approaches for Mitigating Bias

A considerable amount of interest has been observed in healthcare [18,19] regard-
ing the ethical implications of applying ML algorithms. However, comparatively,
little work exists that represents the applicability of satisfying formal fairness
constraints while developing risk prediction or classification models trained with
the EHR’s data. We have seen a number of adversarial learning-based approaches
in the non-healthcare domains to satisfy fairness constraints, especially in the
form of demographic parity. In the situation of image anonymization, one ap-
proach [20] showed that a predictive model can be substituted by an autoencoder
and an adversarial component to accomplish demographic parity. The adversarial
learning technique was further inspected with a gradient reversal objective [21]
for the imbalanced data in terms of the sensitive attributes as well as the out-
come. It was also demonstrated that a small amount of data is needed to train
adversarial networks. Alternatively, the use of equality of odds was presented in
another work [11] to deal with the limitations of demographic parity. In that
work, post-processing techniques were developed to attain equality of odds for
the fixed-threshold classifiers. Recently, equality of odds was achieved for an
adversarial framework by giving the discriminator access to the outcome val-
ues [15].

Equality of odds and demographic parity are called group fairness criteria
as they are mainly involved with evaluating quantities at a group level, gener-
ally recognized as sensitive attributes such as age, gender, ethnicity, etc. The
reasoning and computation of these metrics are straightforward. However, dur-
ing optimization, they might generate models which are biased towards certain
subgroups over groups of sensitive attributes [22]. By utilizing the notion of in-
dividual fairness [10], it may be possible to handle these issues. In this metric, a
model is assessed whether it generates similar outputs for similar types of indi-
viduals. Nevertheless, this notion has limited practical use, as the domain-specific
similarity metric is needed to be developed to encode the preferred criteria of
fairness. A recent work [23] has explored an alternative to both individual and
group fairness with a technique where subgroups are discovered, for which the
model is performing poorly, and subsequently improves the performance of the
model for those subgroups. This approach is model oriented; hence it mainly
relies on model tuning for mitigating the bias. Another related work in health-
care [24], examined the fairness of risk prediction models for the context of
predicting the mortality of patients in intensive care units. They argued that it
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is undesirable to carry out a trade-off between the performance of the model and
fairness across sensitive attributes.

However, none of the works dealt with unbalanced groups and labels. Besides,
we have also been able to train a generalized adversarial model that satisfies
different fairness constraints which will be discussed in the upcoming sections.
From the literature review, we have realized that the fairness of a model should
be evaluated in the context of the data [24]. Therefore, it motivates us to build
a fair model for the context of EHR data where unbalanced groups and labels
will be addressed to make the data bias-free to some extent.

3 Dataset

For the purposes of this work, a dataset of routine data from the pediatric inten-
sive care unit at the Hannover Medical School is utilized. The data, which was
obtained from a previously published study [25], has been pseudonymized to pro-
tect patient confidentiality. The dataset includes information on 168 pediatric
patients, including vital parameters such as temperature, heart rate, respira-
tion rate, and results from laboratory tests, as well as information from medi-
cal devices such as cooling blankets, ventilators, and pacemakers. Each patient
can be identified by a unique study number, which was generated during the
pseudonymization process. The laboratory test results include counts of leuko-
cytes, platelets, and neutrophils, as well as INR values derived from the pro-
thrombin time. Each measurement has a corresponding timestamp, providing a
temporal sequence of data. The age of the patients is also recorded, which is
crucial for correct diagnosis in the context of pediatric intensive care, particu-
larly for SIRS detection (Figure 1). Blood pressure values have been added to
the existing parameters.
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Fig. 1: Distribution of the cohort with classification according to IPSCC.

Along with the described dataset, there is also a gold standard for the exis-
tence of SIRS for the patients during the time period of the documented data,
which was established by two experienced pediatric intensive care physicians.
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These physicians evaluated the patients based on the SIRS diagnostic rules de-
fined by the International Pediatric Sepsis Consensus Conference (IPSCC) [26].
The presence of SIRS was recorded each day that a patient was in the pediatric
intensive care unit. Besides the day-based gold standard, the pediatricians also
recorded the exact time of SIRS episodes, which provides an additional episode-
based gold standard.

3.1 Descriptive Analysis by Age Groups and Gender

The dataset being used is comprised of records from 168 pediatric patients who
were admitted to the department of pediatric cardiology and intensive care
medicine of the Hannover Medical School over a total of 243 days, resulting
in 1,998 days of hospital stay. Out of these 1,998 days, 460 were marked with
a SIRS label in accordance with the day-wise gold standard. The age of the
patients in the cohort is divided into groups based on the IPSCC criteria. The
sex distribution of the patients shows that there were 106 male patients and 62
female patients.

Table 1: Number of observations for each sensitive attribute and label.

Number of observation Count %

Male 8710 59.04
Female 6042 40.96

SIRS 5680 38.5
No SIRS 9072 61.5

Newborn (0d-1w) 1969 13.35
Neonate (1w-1m) 2107 14.28
Infant (1m-1y) 5338 36.18
Toddler (2y-5y) 3458 23.44
School-aged (6y-12y) 1469 9.96
Adult (13y-<18y) 411 2.79

However, after compiling all the data, it is revealed that each patient has
multiple observations even within a single day. This causes the data to be un-
balanced in terms of the number of observations and SIRS labels for certain
attributes. The actual number of observations can be found in the observation
count table.

3.2 Feature Extraction

Our analysis involves working with a set of six health indicators, including tem-
perature, respiration rate, pulse rate, systolic and diastolic pressures, and leuko-
cyte count, which are chosen based on their relevance to the IPSCC criteria.
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Additionally, we use information about the patient’s birthdate, gender and dis-
ease diagnosis to further investigate the data. Age groups are derived from the
birthdates. We extract these features from their corresponding datasets and
split them into hourly observations. Afterwards, maximum, minimum, median
and mean are calculated from the observations of each hour and created a new
dataset. Therefore, the processed dataset contains 24 features (maximum, mini-
mum, median and mean for temperature, pulse, respiration, systolic and diastolic
pressures, and Leukocytes) for training with additional 4 dimensions for study
number, timestamp, age groups and gender. Here, age groups and gender are
sensitive features.

4 Approaches to Reduce Bias

A number of techniques will be used and adapted to alleviate algorithmic bias
that have been mentioned in previous research, in the context of the sepsis
classification task. A summary of all the techniques discussed in this section is
presented in Table 2.

Table 2: A list of techniques that will be employed to reduce bias in the SIRS
classification model.

Used techniques Names

Weighted loss wgLoss

Fairness through unawareness default (loss)

Sensitive features (age group, gender) added to input featureAdded

Adversarial learning with demographic parity adv˙DP

Adversarial learning with equality of odds adv˙EO

4.1 Classification using Artificial Neural Network

Artificial Neural Network (ANN) is supposed to be an effective tool to find an
association between input and output data. A set of records that consist of input
and interrelated output data are needed to train ANN for the accomplishment of
this purpose. The typical architecture of ANN comprises three types of layers:
(1) an input, (2) a hidden, and (3) an output. The neurons of the input and
output layers are linked to the input and output vectors, respectively [27]. In
contrast, neurons of the hidden layer are associated with the neurons of the
input and output layers. These hidden layer neurons are mainly responsible for
transforming the input data into the related output data. In addition, a transfer
function is used to transfer a weighted summation of the input data. In this study,
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a back propagation network with the Adam optimization algorithm was used to
train ANN for the first three strategies: fairness through unawareness (default),
weighted loss (wgLoss) and sensitive features (age groups, gender) added to input
(featureAdded). The network consists of four layers with rectified linear unit
(ReLU) activations and dropouts of 0.5 in between. The hidden layers consist
of fixed 32 neurons each. All the implementation in this work is accomplished
using Python, while the rest of the characteristics of ANN were set according to
those implemented in the previous experiments [28,29]. The default loss is used
as follows,

Lossdef = Lossy = BinaryCrossEntropy(yi, ŷi)

= − 1

N

N∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi)
(3)

Where, N is the output size, yi is the ground truth and ŷi is the model output.

4.2 Data Construction and Weighted Loss

Bias may be introduced into the prediction model due to three main factors
during the data construction phase. The first factor is associated with to sensitive
patient attributes, where there may be an imbalance in the training samples, as
demonstrated in Table 1. This can result in disparities in prediction quality,
as outlined in Section 2. In order to address the problem of imbalanced data
samples, we can adjust the loss function by assigning weights to training samples,
which can help to deal with the under-representation of gender and age groups,
and eventually, promote fairness during the data construction phase. The ANN
loss function is modified for SIRS classification and defined as follows:

LwgGroups = α(g(yi)) β(a(yi)) BinaryCrossEntropy(ŷi, yi) (4)

where, g(yi) denotes the gender and a(yi) denotes the age group of the patient
sample that have the SIRS label yi, and α(g(yi)) and β(a(yi)) assign the patient
sample with the weights associated with their gender and age group respectively.
Normally, the values of α(⋆) and β(⋆) vary, but to ensure that the model learns
from under-represented groups, it is necessary to assign smaller weights to the
majority groups compared to the minority groups in the data. This is because
the model tends to learn more from the group with larger weights than the group
with smaller weights.

A second factor is the imbalanced label distribution across groups, which
can introduce bias. SIRS label distributions of the patients indicate unevenness,
also echoed in our dataset as depicted in Table 1, where somewhere around half
of labels (38.5%) are in a positive category (SIRS). A model tends to exhibit
bias towards the distribution of the groups that are the largest in size when
disparities between group label distributions are in existence, deteriorating the
fairness issue regarding SIRS classification. We can actually balance labels in
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a similar manner to instance balancing by assigning different weights to the
training samples according to their SIRS labels. This results in an adjusted loss
function for the ANN classification, which can be expressed as:

LwgLabel = − 1

N

N∑
i=1

λ(yi)(yi · log ŷi + (1− yi) · log (1− ŷi)) (5)

Here, the function λ(yi) assigns a weight to each patient sample based on its
diagnosis label. Both label-based and group representation-based instance bal-
ancing can be used. In that case, the weighting schemes are merged as follows:

LwgCombine = − 1

N
α(g(yi)) β(a(yi)) ·

N∑
i=1

λ(yi)(yi · log ŷi + (1− yi) · log (1− ŷi)) (6)

Third, it has been demonstrated that the “fairness through unawareness” strat-
egy is ineffective because it does not fully conceal protected (sensitive) attributes
which could be inferred from other relatively unrelated features [10]. As an al-
ternative, it is recommended to identify sensitive patient attributes like gender
and age group, and use more advanced modeling approaches to reduce any bias
resulting from these attributes.

5 Adversarial Learning

5.1 Model Structure

We start with the ANN SIRS classification model, a multi-layer artificial neural
network C which outputs a probability distribution, designated as ŷ, of SIRS
for each patient in the intensive care unit. The objective in this situation is to
make sure that the ANN can efficiently classify diagnoses while simultaneously
exhibiting the highest level of ambiguity or uncertainty regarding the gender and
age group of the patient. At this point, we require our output ŷ to satisfy the
constraints of demographic parity or equality of odds, separately, for different
sensitive features (gender and age group). A network can learn a bias even if
the sensitive features are not an input to our neural network, as those features
may have some correlation with other features. The features that are used as
input x are mentioned in Section 3.2. The diagram of our adversarial model is
illustrated in Figure 2.

Demographic Parity Model: an adversarial neural network A takes the
prediction ŷ as input and learns to predict sensitive features, zGender and zAge group.
If our classification model exhibits bias against zGender and zAge group, these sen-
sitive attributes can be predicted from the value of ŷ. Consequently, A will lead
to high classification accuracy.

Equality of Odds Model: an adversarial neural network called A takes the
predicted value ŷ and the true label y as input and learns to predict sensitive
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Fig. 2: Diagram of our adversarial model structure.

patient features, specifically zGender and zAge group. When the predicted value ŷ
and the sensitive features zGender and zAge group are not conditionally indepen-
dent given the true label y, the pair (ŷ, y) can reveal the sensitive attributes,
and A will have high accuracy in classifying them.

Both classifier C and adversarial A consist of 3 hidden layers with 32 neurons
in each layer. Rectified linear unit (ReLU) activations and dropouts of 0.5 are
used between hidden layers.

5.2 Model Training

The approach of adversarial learning has been utilized to find out unbiased rep-
resentations trained out of data that contains inherent biases [15]. The principal
idea should be to use deep representations that are highly informative for the
primary task of prediction or classification, although being as minimally dis-
criminative as possible with regard to predicting sensitive attributes [17]. Our
objective is for classifier C to predict ŷ correctly and for adversarial network
A to predict age group zAge group and gender zGender poorly. For simplicity, we
mention zAge group and zGender as za and zg, respectively, in the equations. If
it is possible to accomplish this, the model will output an accurate, unbiased ŷ.
Particularly, binary cross-entropy losses are used for C and A, which are referred
to as Lossy and Lossz, respectively. Lossz represents the loss from zAge group

and gender zGender. Here, we can treat gender as a binary feature and use a
binary cross-entropy loss.

Losszg = − 1

N

N∑
i=1

zgi · log ẑgi + (1− zgi) · log (1− ẑgi) (7)
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Algorithm 1 Training procedure of Adversarial Network to mitigate biases.

Require: x, z∗, y, δ, ω, τ, K, L, N
Ensure: Fair ŷ

Sample R data samples xi, yi, z∗i where i = 1, ..., R ▷ Minibatch sampling

for K epochs do ▷ Pretrain classifier, C
for i ∈ R do

∇C [Lossy(C | xi, yi)] ▷ Update C using loss defined in equation (3)
end for

end for

for L epochs do ▷ Pretrain adversarial network, A
for i ∈ R do

ŷ = C(xi) ▷ Get the prediction ŷ from C
∇A[Lossz(A | ŷi, yi, z∗i, δ, ω)] ▷ Update A using loss defined in equation (9)

end for
end for

for N epochs do ▷ Train adversarial and classifier networks concurrently.
for i ∈ R do

ŷi = C(xi)
∇A[Lossz(A | ŷi, yi, z∗i, δ, ω)]

end for

for a random batch index r ∈ R do
ŷr = C(xr)
ẑr = A(ŷr, yr)
∇C [τLossy(C | xr, yr)− Lossz(A | ŷr, yr, z∗r, δ, ω)] ▷ Update C using loss

defined in equation (10)
end for

end for
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However, the age group is categorical, as it contains six different age groups.
Therefore, Multi-Class binary cross entropy is suitable for zAge group.

Lossza = − 1

N

N∑
i=1

M∑
j=1

zai,j
· log ẑai,j (8)

Now, after combining Losszg and Lossza , we get average Lossz as follows,

Lossz = − 1

N

N∑
i=1

(σ · (zgi · log ẑgi + (1− zgi) · log (1− ẑgi))

+ω

M∑
j=1

zai,j
· log ẑai,j

)

(9)

Lossz is back-propagate through A to train A. Still, we have to train C so that
it becomes good at predicting ŷ which is not highly correlated with zAge group and
zGender. If we subtract Lossz from Lossy, C will be instigated to maximize Lossz,
and as a result, it will produce a ŷ which simply cannot be utilized to predict
sensitive features. Therefore, ŷ values will be closer to obtaining parity. However,
it is essential to note that the model must also retain its capability to accurately
classify SIRS. Thus, the weights of the losses should be adjusted accordingly
to avoid poor SIRS classification performance. The overall loss function can be
expressed as follows:

Loss = − 1

N

N∑
i=1

(τ · (yi · log ŷi + (1− yi) · log (1− ŷi))

−(σ · (zgi · log ẑgi + (1− zgi) · log (1− ẑgi))

+ω

M∑
j=1

zai,j
· log ẑai,j

))

(10)

where, τ , σ and ω are the coefficients that control the importance of the loss
functions. N and M are the numbers of observations and groups for the pro-
tected feature age group. The overall adversarial training procedure is shown in
Algorithm 1.

6 Result Analysis

We assess the effectiveness of the proposed techniques in ensuring model equity
and fairness by measuring positive rate (PR), true negative rate (TNR), true
positive rate (TPR), and accuracy (ACC) metrics. These metrics are used to
report demographic parity and equity of odds as discussed in Section 2. Accuracy
is a metric that determines the overall capability of a model to make accurate
predictions. TPR and TNR reflect the probability of correctly identified SIRS
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and NO SIRS patients, respectively, by the model. FPR is actually calculated
mathematically from TNR using the following equation,

FPR = 1− TNR (11)

From the definition, we can say, demographic parity will be satisfied when all
the groups have same PR. Similarly, the equality of odds will be satisfied if TPR
and FPR are the same for all sensitive groups. Experiments were carried out
using the datasets described in Section 3. The test, validation, and training data
split in a 4:3:13 ratio. The reported metrics were calculated as averages over all
the approaches mentioned in Table 2.
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Fig. 3: (a) Positive Rate (PR) (%), (b) True Positive Rate (TPR) (%), (c) True
Negative Rate (TNR) (%) and (d) Accuracy (Acc) (%) of the models.

6.1 The Effect of Adding Sensitive Attributes

To assess how age group and gender affect the fairness and predictive perfor-
mance of the SIRS classification model, we initially incorporated these sensitive
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Table 3: The performance evaluation of four fairness-based techniques and their
comparison with the default strategy (no strategy) is presented in terms of PR,
TPR, TNR, FPR, and ACC, for each sensitive group. Additionally, the standard
deviation (STD) is also reported as a measure of group fairness.
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Default 13.5 14 37 41.8 64.9 38.3 36.7 31.3 34.91 15.31
wgLoss 10.4 11.3 40.2 48.2 71.5 42.2 38.8 34.7 37.13 18.47
featureAdded 6 9.1 39.8 51.8 65.8 41.7 37.2 35.2 36.37 18.74
Adv˙DP 46.8 46 46.8 49.2 65.5 42.2 49.4 48.3 48.98 6.49
Adv˙EO 26.7 20.1 39.3 42.6 50.3 40.8 38.9 33.6 33.34 8.96

T
P
R

(%
)

Default 71 85.2 73.1 75.6 92.3 72.6 86.3 77 78.6 7.28
wgLoss 79.5 75.5 78.2 81.1 96 98.8 84.5 80.8 83 7.98
featureAdded 64.4 80.2 82.6 92 93.2 93 88.7 85.4 87.4 9.03
Adv˙DP 67.1 96.2 80.8 75.4 86.2 77.9 80.5 79.7 80.2 7.84
Adv˙EO 75.3 87.7 76.8 66.7 67.9 68.6 75.9 65.9 74.6 6.91
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) Default 94.7 95.7 92.8 92.3 88.7 77.5 91.8 94.9 93.1 5.57

wgLoss 95.2 95.9 87.3 89.7 92.2 98.3 91.2 92.2 91.6 3.35
featureAdded 99.7 99.1 97.9 96.3 95.6 100 97.9 98.4 98.1 1.45
Adv˙DP 54.8 59.6 77.8 81 88.2 83.3 71 70 70.5 10.92
Adv˙EO 77.2 87.4 87.9 85.2 95.6 79.2 85.3 85.2 88.1 5.32
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Default 5.3 4.3 7.2 7.7 11.3 22.5 8.2 5.1 6.9 5.57
wgLoss 4.8 4.1 12.7 10.3 7.8 1.7 8.8 7.8 8.4 3.35
featureAdded 0.3 0.9 2.1 3.7 4.4 0 2.1 1.6 1.9 1.45
Adv˙DP 45.2 40.4 22.2 19 11.8 16.7 29 30 29.5 10.92
Adv˙EO 22.8 12.6 12.1 14.8 4.4 20.8 14.7 14.8 11.9 5.32

A
C
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(%
) Default 93.20 94.12 86.62 83.34 90.60 76.70 88.43 87.19 87.92 5.26

wgLoss 94.01 93.83 83.47 85.08 94.96 98.54 88.52 87.98 88.30 5.02
featureAdded 97.06 97.15 91.45 93.99 93.87 97.09 94.26 93.64 94.01 1.96
Adv˙DP 55.74 63.28 79.05 77.96 86.79 81.07 74.74 73.55 74.34 9.38
Adv˙EO 77.06 87.48 83.21 75.30 75.61 74.76 81.56 78.12 80.15 4.25

attributes to the input by joining their one-hot representation. It is solely done
for validation purposes. The results of the evaluation (Table 3 / Figure 3) indi-
cate that incorporating sensitive attributes into the model input led to an im-
provement in classification accuracy for most of groups. This finding aligns with
the prior research that the overall accuracy can be enhanced by including the
sensitive features [30]. On the other hand, the model suffers from the increased
discrimination in terms of TPR, TNR, and FPR. Specifically, adding age group
and gender to the model input are likely to improve TPR for infant, toddler,



16 Pronaya Prosun Das et al.

school-aged, adolescent, male and female, while decreasing TPR for Newborn
and equal TPR for Neonate compared to TPRs produced by the default model.

On the contrary, the inclusion of sensitive attributes resulted in an increase in
TNR for all groups. However, the opposite relationship between TNR and TPR
was observed with the addition of more attributes to the model input high-
lighted the tradeoff and conflict between them. This phenomenon of significant
differences in TNR and TPR between underrepresented and majority groups is
consistent with the findings of Yu et al. [31]. Our findings validate the prior
studies that have shown the possibility of identity-based biases being introduced
in predictive analytics due to the awareness of sensitive attributes [32].

6.2 Mitigating Imbalanced Labels and Sensitive Group Disparities

From table 1, it is evident that the distribution of SIRS labels in the entire
dataset is uneven, with 38.5% of the population having SIRS. Additionally, there
are disparities among sensitive groups (gender and age groups). Three different
weights α, β, λ have been introduced where α and β have been used for bal-
ancing sensitive attributes and λ is used for balancing SIRS label to mitigates
the prediction quality disparity issues. Sample re-weighting based on sensitive
attributes is a technique that aims to increase the representation of underrepre-
sented groups in the training set by assigning more weight to their samples in
the loss function. In the absence of such weighting, all samples are given equal
importance in the loss function, which results in the model focusing more on
the majority groups that have more samples than the underrepresented groups.
This approach is called “fairness through unawareness” and is specified as the
default strategy, which is mentioned in Section 4. Default strategy uses the loss
function described in Equation 3.

The weighting functions α, β are defined to assign higher weights to under-
represented groups and lower weights to overrepresented groups in equation 6
as α(vgender) = 1/vgender and β(vage group) = 1/vage group, where vgender and
vage group are the proportion vectors of each gender and age group in the data.
λ is calculated in the same way. The key distinction is that it is calculated from
mini-batches and defined as g(vlbl) = 1/vlbl, where vlbl refers to the proportion
of each label type (i.e., SIRS or NO SIRS) in the mini-batch, represented as a
vector. Therefore, the weight of each sensitive attribute and label in the loss
function will be nearly equal on average after re-weighting.

The evaluation results of different models based on four metrics are depicted
in Figure 3. The results are also presented in Table 3. This section compares the
result between unweighted loss (default) and weighted loss (wgLoss). In general,
the models trained with the unweighted loss function (default) had a lower TPR
compared to TNR on average (78.6% v.s. 93.1%). This is due to the fact that
the model was trained on more samples with the No SIRS label, according to
Table 1. However, the difference between overall TPR and TNR grew smaller
(83% v.s. 91.6%) after using the weighted loss function. The default model still
had a lower TPR than TNR for all groups except school-aged children when
examining the population by gender and age groups. This is probably because
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of the fact that the school-aged group contains higher proportion of patients
that have SIRS. The strategy of using weighted loss improved both TPR and
TNR for almost every sensitive groups, indicating that it effectively addresses
the unfairness issue among different age groups and gender to some extent. It is
also observed that weighted loss increased accuracy for the overall population as
well as specific subgroups such as Newborn, Toddler, School-aged, Adolescent,
Male, and Female, without sacrificing much accuracy for Neonate and Infant.
Hence, we conclude that utilizing weighted loss during training is an effective
approach for reducing bias in imbalanced SIRS label as well as sensitive groups.

6.3 Group Fairness

This paper defines group fairness in terms of both equalized odds [11] and demo-
graphic parity [10]. This means that each gender and age group requires same
TPR and FPR for equality of odds (equalized odds), and positive rate for de-
mographic parity. Here, group fairness is assessed using PR, TPR, FPR, and
accuracy. Therefore, we calculate the standard deviation (STD) of each metric.
The lower the STD over all the groups, the less disparity there is among the
groups, which means there is greater fairness. If group fairness is fully achieved,
the STD will be 0. Therefore, the STD can be considered as a measure of group
fairness. The evaluation outcomes of the suggested techniques on all sensitive
groups are presented in Table 3. Five different models were constructed in ac-
cordance with these techniques. The original ANN SIRS classification model is
specified by “default” which is mentioned in the previous section. “wgLoss” is the
loss weighting strategies by SIRS label and sensitive groups (gender, age group),
which is described in Section 6.2. “featureAdded” represents the approach of
incorporating gender and age groups to the input of model discussed in Section
6.1. The terms “adv DP” and “adv EO” refer to the models that were trained
using adversarial learning introduced in Section 5.

The adversarial learning strategies (“adv DP” and “adv EO”) achieved com-
paratively minimum SDs for PR, TPR, FPR, and accuracy, demonstrating the
highest level of fairness among all the techniques that were compared. SD of
TPR and FPR are the lowest for “adv EO”, hence, we can say, this strategy has
produced a fair model considering the equality of odds. According to the defi-
nition of demographic parity, “adv DP” should be the fairest model if we con-
sider Positive Rate (PR). PR has increased significantly among different groups
compared to other strategies. However, it also has the overall lowest accuracy.
As well, demographic parity has some limitations as discussed in Section 2.1.
Therefore, “adv EO” is more suitable for the nature of our dataset. “wgLoss”
technique has also demonstrated encouraging outcomes regarding TPR, FPR
and accuracy. While maintaining fairness constraints, adversarial models suffer
from predictive performance in terms of accuracy. In that sense, if accuracy is
the primary concern, “wgLoss” could be considered as a viable strategy in this
work.

The adversarial learning for SIRS classification aims to minimize discrimina-
tion in the model’s hidden states with respect to gender and age group, thereby
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allowing it to learn unbiased representations from biased data. Although this
technique did not perform the best when considering TPR, TNR, FPR, or ac-
curacy, it did not suffer substantially in terms of these metrics. None of the
strategies was consistently the best for all these metrics. The method that fre-
quently performed the best was the one that incorporated sensitive features in
the input. However, this strategy was also most frequently the worst in terms of
group fairness and often worse as opposed to the default strategy. This highlights
the unavoidable trade-offs that must be made when considering fairness [9, 33].

7 Conclusions

In this work, we worked with demographically imbalanced and biased data,
and focused on data construction, and model training phases for the mitigation
of biases. We demonstrated a general strategy for training unbiased adversar-
ial models which are able to apply constraints of different fairness definitions.
As anticipated, the “Fairness through unawareness” strategy was not successful
in attaining group fairness. Nevertheless, explicitly providing the sensitive at-
tributes as input to the model resulted in unfair outcomes compared to all other
strategies in terms of TPR. Adversarial learning with equality of odds obtained
the highest fairness scores on TPR, second and third-best scores on Accuracy
and FPR, respectively. Adversarial learning with demographic parity attained
the best fairness scores while considering PR. However, it exhibits poor scores
for all other metrics.

We found SIRS label balancing and re-weighting underrepresented groups
to be a compelling strategy for boosting TNR and TPR (reducing FPR) among
these groups. It was also successful in enhancing the prediction accuracy for many
of the marginalized groups, specifically Newborn, Toddler, School aged, Adoles-
cent. This discovery highlights a basic yet significant observation that minority
groups are likely to be predicted poorly than the majority group. Weighting loss
function mitigates this effect to some extent.

Additional work is required to establish further recommendations to tackle
fairness and equity in the plethora of healthcare circumstances where unfortu-
nately the ML could otherwise broaden performance gaps and disparities. The
directions for future work can be taken to address fairness with some other fair-
ness constraints such as false positives parity, false discovery rate parity, recall
parity, etc. We also want to work on an approach for the mitigation of the bias
at the inference phase.

8 Acknowledgement

The ELISE project is partially funded by the Federal Ministry of Health; Grant
No. 2520DAT66A. This work was also partially supported by the Fraunhofer
Internal Programs under Grant No. Attract 042-601000. Ethics approval for use
of routine data was given by the Ethics Committee of Hannover Medical School
(approval number 9819 BO S 2021). We would like to thank our colleagues from



Algorithmic Fairness in Healthcare Data 19

the MHH Information Technology (MIT) from the Hannover Medical School for
their support.

References

1. Krause, J., Gulshan, V., Rahimy, E., Karth, P., Widner, K., Corrado, G.S., Peng,
L., Webster, D.R.: Grader variability and the importance of reference standards
for evaluating machine learning models for diabetic retinopathy. Ophthalmology
125(8), 1264–1272 (2018)

2. Association, A.M., et al.: Ama passes first policy recommendations on aug-
mented intelligence. 2018. Accessed at www. ama-assn. org/ama-passes-first-
policy-recommendations-augmented-intelligence on 6 (2018)

3. Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A.,
Schein, R.M., Sibbald, W.J.: Definitions for sepsis and organ failure and guidelines
for the use of innovative therapies in sepsis. Chest 101(6), 1644–1655 (1992)

4. Shapiro, N., Howell, M.D., Bates, D.W., Angus, D.C., Ngo, L., Talmor, D.: The
association of sepsis syndrome and organ dysfunction with mortality in emergency
department patients with suspected infection. Annals of emergency medicine 48(5),
583–590 (2006)

5. Dellinger, R.P., Levy, M.M., Carlet, J.M., Bion, J., Parker, M.M., Jaeschke, R.,
Reinhart, K., Angus, D.C., Brun-Buisson, C., Beale, R., et al.: Surviving sep-
sis campaign: international guidelines for management of severe sepsis and septic
shock: 2008. Intensive care medicine 34(1), 17–60 (2008)

6. Gupta, A., Liu, T., Shepherd, S., Paiva, W.: Using statistical and machine learning
methods to evaluate the prognostic accuracy of sirs and qsofa. Healthcare Infor-
matics Research 24(2), 139–147 (2018)

7. Vembandasamy, K., Sasipriya, R., Deepa, E.: Heart diseases detection using naive
bayes algorithm. International Journal of Innovative Science, Engineering & Tech-
nology 2(9), 441–444 (2015)

8. Piri, S., Delen, D., Liu, T., Zolbanin, H.M.: A data analytics approach to building a
clinical decision support system for diabetic retinopathy: Developing and deploying
a model ensemble. Decision Support Systems 101, 12–27 (2017)

9. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair de-
termination of risk scores. arXiv preprint arXiv:1609.05807 (2016)

10. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd innovations in theoretical computer science con-
ference. pp. 214–226 (2012)

11. Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in supervised
learning in advances in neural information processing systems (2016)

12. Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Pro-
ceedings of the 14th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 560–568 (2008)

13. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without
discrimination. Knowledge and information systems 33(1), 1–33 (2012)

14. Wang, T., Zhao, J., Yatskar, M., Chang, K.W., Ordonez, V.: Balanced datasets are
not enough: Estimating and mitigating gender bias in deep image representations.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 5310–5319 (2019)



20 Pronaya Prosun Das et al.

15. Madras, D., Creager, E., Pitassi, T., Zemel, R.: Learning adversarially fair and
transferable representations. In: International Conference on Machine Learning.
pp. 3384–3393. PMLR (2018)

16. Wu, C., Wu, F., Wang, X., Huang, Y., Xie, X.: Fairrec: fairness-aware news rec-
ommendation with decomposed adversarial learning. AAAI (2021)

17. Du, M., Yang, F., Zou, N., Hu, X.: Fairness in deep learning: A computational
perspective. IEEE Intelligent Systems 36(4), 25–34 (2020)

18. Cohen, I.G., Amarasingham, R., Shah, A., Xie, B., Lo, B.: The legal and ethical
concerns that arise from using complex predictive analytics in health care. Health
affairs 33(7), 1139–1147 (2014)

19. Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health
care—addressing ethical challenges. The New England journal of medicine 378(11),
981 (2018)

20. Edwards, H., Storkey, A.: Censoring representations with an adversary. arXiv
preprint arXiv:1511.05897 (2015)

21. Beutel, A., Chen, J., Zhao, Z., Chi, E.H.: Data decisions and theoretical
implications when adversarially learning fair representations. arXiv preprint
arXiv:1707.00075 (2017)

22. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering: Au-
diting and learning for subgroup fairness. In: International Conference on Machine
Learning. pp. 2564–2572. PMLR (2018)
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