
Generalizing Conjunctive Queries for
Informative Answers

Katsumi Inoue and Lena Wiese?

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{ki|wiese}@nii.ac.jp

Abstract. Deductive generalization of queries is one method to provide
informative answers to failing queries. We analyze properties of opera-
tors that generalize conjunctive queries consisting of positive as well as
negative literals. We show that for the stepwise combination of these
operators it suffices to apply the operator in one certain order.

1 Introduction and Related Work

Retrieval of data stored in database systems is a basic use case in the information
society. Hence answering a user’s queries is a central issue for database systems
(apart from other aspects like for example integrity, availability and efficiency
of the system). However, a database system may not always be able to answer
queries in a satisfactory manner. In particular, if a database answer is empty
the corresponding query is said to be a “failing query” (see for example [15]).
The reasons for this can be manifold; for instance, in a selection query, selection
conditions may be too strict to yield any result. Some authors (for example [5])
differentiate between “misconceptions” and “false presuppositions” as causes for
failure. Cooperative database systems search for answers that – although
not exactly matching the user’s original query – are informative answers for
the user: they provide data that are “closely related” to the user’s intention; or
they fix misconceptions in a query and return answers to the modified query.
Current search engines, web shops or expert systems use similar cooperative
techniques to provide users with data that might be close to their interest.

In this article we want to foster the logical foundation of cooperative query
answering. We analyze a set of generalization operators that can be applied to
failing queries. This logical point of view has some history of related work which
we will survey briefly. The term “cooperative database system” was for example
used in [2] for a system called “CoBase” that relies on several type abstraction
hierarchies (TAH) to relax queries and hence to return a wider range of answers.
In a similar manner, Halder and Cortesi [8] employ abstraction of domains and
define optimality of answers with respect to some user-defined relevancy con-
straints. The approach by Pivert et al using fuzzy sets [15] analyzes cooperative

? Lena Wiese gratefully acknowledges a postdoctoral research grant of the German
Academic Exchange Service (DAAD).

query answering based on semantic proximity. With what they call “incremental
relaxation” they apply generalization operators to single conjuncts in a conjunc-
tive query; hence generalized queries form a lattice structure: queries with the
same number of applications generalization operators are in the same level of
the lattice. Other related systems are Flex [13], Carmin [6] and Ishmael [5] that
introduce and analyze dedicated generalization operators. Hurtado et al [9] re-
lax RDF queries based on an ontology. In a multi-agent negotiation framework,
Sakama and Inoue [17] devise procedures for generating “neighborhood propos-
als” in a negotiation process using the three operators we will also analyze in
this paper.

We complement and advance these previous works by

– analyzing the properties of the three generalization operators “dropping con-
ditions”, “anti-instantiation”, and “goal replacement” for deductive gener-
alization of queries.

– combining these operators in a breadth-first search manner while employing
a notion of minimality based on the number of applications of operators.

The paper is outlined as follows: Sections 2 and 3 set the basic terminology for
cooperative query answering and query generalization. Section 4 introduces three
basic generalization operators for conjunctive queries and Section 5 analyzes the
combination of these. Section 6 concludes the paper with a brief discussion.

2 Cooperative Query Answering for Knowledge Bases

In this article we will follow a formal approach to achieve informative answers in
a cooperative knowledge base system. In particular, we will base query answering
on a consequence operator (denoted |=) in a chosen logic. Throughout this article
we assume a logical language L consisting of a finite set of predicate symbols (for
example denoted Ill, Treat or P), a possibly infinite set dom of constant symbols
(for example denoted Mary or a), and an infinite set of variables (for example
denoted x or y). The capital letter X denotes a vector of variables; if the order
of variables in X does not matter, we identify X with the set of its variables and
apply set operators – for example we write y ∈ X. We use the standard logical
connectors conjunction ∧, disjunction ∨, negation ¬ and material implication
→ and universal ∀ as well as existential ∃ quantifiers. An atom is a formula
consisting of a single predicate symbol only; a literal is an atom (a “positive
literal”) or a negation of an atom (a “negative literal”); a clause is a disjunction
of atoms; a ground formula is one that contains no variables; the existential
(universal) closure of a formula φ is written as ∃φ (∀φ) and denotes the closed
formula obtained by binding all free variables of φ with the respective quantifier.
In particular, we will later on use single-headed “range-restricted rules” of the
form Li1 ∧ . . .∧Lim → L′ where each Lij and L′ are literals and all free variables
of L′ are contained in the free variables of the Lij . On occasion, if a set is a
singleton set we will identify the set with the single formula in it. For a set of
formulas, a model is an interpretation that makes all formulas in the set true.

For two sets of formulas S and S′, logical implication S |= S′ means that every
model of S is also a model of S′. Two formulas φ, φ′ are equivalent (denoted
φ ≡ φ′) if φ |= φ′ and φ′ |= φ. A particular case of equivalent formulas are
“variants” that are syntactically identical up to variable renaming.

In this article, we assume that data are stored in a knowledge base. A
knowledge base (denoted Σ) is a set of formulas in the chosen logic; if formulas in
Σ contain free variables, these variables are assumed to be universally quantified;
in other words, the formulas in Σ are identified with their universal closure. A
knowledge base represents a set of “possible worlds”; that is, a set of models of
the knowledge base. As an example, consider an information system with medical
data on patient’s illnesses and medical treatments. For the knowledge base Σ =
{Ill(Mary,Cough)∨ Ill(Mary,Flu)}, a possible world would be {Ill(Mary,Cough)}
making only this single ground atom true and all other ground atoms false.
Note that with an infinite underlying domain dom there are in general infinitely
many worlds (and also infinitely many possible worlds) for a knowledge base.
In addition, we implicitly assume that a knowledge base is consistent: it has at
least one possible world. In an inconsistent database (that is, one containing a
logical contradiction like Σ = {P (a)∧¬P (a)}), any formula can be derived which
makes query answering useless. Knowledge bases serve as a quite generic data
model for the representation of knowledge in multiagent systems, belief revision
or ontology-based reasoning. Note that when restricting a knowledge base to
a set of ground atoms and accompanying it with a “closed world assumption”
(that makes all ground atoms not contained in the knowledge base false), then
the concept of a knowledge base can emulate the relational data model; our
analysis will however apply to the general case also without this assumption.

A user can issue queries to a knowledge base to retrieve data from it. In
the following we analyze operators that can generalize conjunctive queries with
positive as well as negative literals.

Definition 1 (Query). A query is a conjunctive formula L1 ∧ . . . ∧ Ln where
each Li is a literal. We often abbreviate a query as Q(X), where Q stands for
the conjunction of literals and X is an n-tuple of variables appearing in Q.

For query answering different semantics can be employed. For example, an open
query Q(X) can be answered by finding all substitutions for the free variables
of Q(X); more formally, for a substitution θ that maps the free variables of
Q(X) to arbitrary terms (including variables), ∀Q(X)θ is a correct answer if
Σ |= ∀Q(X)θ. [11] analyze minimal disjunctive answers whereas [17] use answer
set semantics for extended disjunctive logic programs. In this article, we apply
generalization operators to queries. This can be done independent of a specific
query answering semantics. We just assume that a dedicated query answering
function ans represents the set of all correct answers.

Definition 2 (Answer set). For a query Q(X) and a knowledge base Σ, the
set of correct answers (or answer set, for short) ans(Q(X),Σ) is a set of closed
formulas such that for each φ ∈ ans(Q(X),Σ) it holds that Σ |= φ and φ is
derived from Q(X) by some query answering semantics.

For a given knowledge base, not all queries can be answered correctly. If no
correct answer for a query exists, the query is said to fail.

Definition 3 (Failing query). Let Σ be a knowledge base, Q(X) be a query.
If ans(Q(X),Σ) = ∅, the query Q(X) fails (in Σ).

3 Query Generalization

Our purpose is to devise strategies for cooperative query answering with
generalization: if for some query Q(X) the knowledge base answer is the empty
set, Q(X) is transformed into a more general query Qgen(X,Y) that has a
non-empty answer in the knowledge base. This idea is visualized in Figure 1.
Properties of inductive and deductive generalization have already been discussed

user
Σ

1. uninformative answer ans(Q(X),Σ) = ∅
2. generalization Q(X) 7→ Qgen(X,Y)
3. informative answer ans(Qgen(X,Y),Σ) 6= ∅

failing query Q(X)

ans(Qgen(X,Y),Σ)

Fig. 1. Query generalization for informative answers

by de Raedt [3]. He argues that specialization and generalization are inverse op-
erators and can be applied for both inductive and deductive reasoning. He also
shows that an inductive operator applied to the negation of a formula behaves
as a deductive operator (when again the result of the induction is negated).
For query generalization we will apply deduction. Generalization can take place
either in a way independent of knowledge base contents: it acts solely on the
query formula Q(X) like the generalization operator “dropping conditions”. On
the other hand, generalization can depend on the knowledge base by applying
rules contained in the knowledge base: with the operator of “goal replacement”
the query Q(X) is modified by substituting a part of the query according to some
rule in the knowledge base. In this sense, we will speak of generalization “with
respect to a knowledge base”. This notion has been used for “relaxation” in [4].
As it can be applied to open formulas we borrow it here; however, we combine
operators in a different manner and employ an operator-based distance.

Definition 4 (Deductive generalization wrt. knowledge base [4]). Let
Σ be a knowledge base, φ(X) be a formula with a tuple X of free variables, and
ψ(X,Y) be a formula with an additional tuple Y of free variables disjoint from
X. The formula ψ(X,Y) is a deductive generalization of φ(X), if it holds in Σ
that the less general φ implies the more general ψ where for the free variables X
(the ones that occur in φ and possibly in ψ) the universal closure and for free
variables Y (the ones that occur in ψ only) the existential closure is taken:

Σ |= ∀X∃Y (φ(X)→ ψ(X,Y))

As a simple example, assuming classical first-order logic, for the formula
φ1 = Ill(Mary,Cough) the formula Ill(y,Cough) is a deductive generalization be-
cause it holds in any first-order model that ∃y(Ill(Mary,Cough)→ Ill(y,Cough)).
Analogously, Ill(Mary, y′) and Ill(y, y′) are generalizations for the same formula
φ1. But note that Ill(y, y′) is also a generalization of Ill(y,Cough) because it
holds in any first-order model that ∀y∃y′ (Ill(y,Cough) → Ill(y, y′)). Whereas
for Ill(y,Cough) and Ill(Mary, y′) neither is a generalization of the other.

We can now give a formal definition of generalized queries.

Definition 5 (Generalized query with informative answer). A query for-
mula Qgen(X,Y) is a generalized query with informative answer for a query
Q(X) (with respect to a knowledge base Σ) if the following properties hold:

1. Failing query: ans(Q(X),Σ) = ∅
2. Generalized query: Qgen(X,Y) is a deductive generalization of Q(X)
3. Informative answer: ans(Qgen(X,Y),Σ) 6= ∅

To capture a notion of closeness between the original query and the gen-
eralized query, the generalized query should have some property of minimal
generalization. There are several definitions of minimality available. For exam-
ple, Plotkin [16] devised subsumption-based “least general generalization”. For
generalization based on an abstraction hierarchy, minimal distance can be de-
fined by a shortest path in the hierarchy [18]. Another established method is a
model-based distance as for example used for dilation operators [7]. The number
of applications of generalization operators is counted in [1]. We also employ a
notion of minimality that counts the number of individual generalization steps
based on a set GenOp of generalization operators. In contrast to [1], the opera-
tors we analyze (in particular “goal replacement”) need not apply only to single
conjuncts in a query but can also apply to several conjuncts at the same time;
thus our operators lead to a generalization behavior different from [1].

Definition 6 (Generalization operator). For sets S and S′ of formulas, an
operator o is a generalization operator if o(S) = S′ and for each ψ ∈ S′ there is
a φ ∈ S such that ψ is a deductive generalization of φ.

Note that o might not be applicable to all formulas in S and hence the map-
ping is only surjective. Such a generalization operator defines one single atomic
generalization step – for example, as we will use later, dropping one condition,
or replacing one goal, or anti-instantiating one constant in a query. We now as-
sume that a set GenOp has been specified and define the operator-based distance;
however we defer the description of generalization operators until Section 4.

Definition 7 (Operator-based distance). Let Σ be a knowledge base, φ(X)
be a formula, and GenOp be a set of generalization operators. Let Gi be the set of
formulas obtained by applying i operators from GenOp to φ(X) in any possible
way without allowing formulas that are equivalent to any formula in Gj (j ≤ i):

G0 := {φ(X)}
Gi := {ψ(X,Y) | ψ(X,Y) ∈ o(Gi−1) where o ∈ GenOp and for every j ≤ i

there is no ψ′(X,Y ′) ∈ Gj such that ψ′(X,Y ′) ≡ ψ(X,Y)}

A formula ψ(X,Y) has distance l to φ(X) (with respect to Σ and GenOp) if
ψ(X,Y) can be obtained by applying at least l generalization operators to φ(X);
in other words, if ψ(X,Y) ∈ Gl.

4 Cooperative Query Answering for Conjunctive Queries

In the following subsections, we analyze three generalization operators that mod-
ify a given query in order to obtain a generalized query with informative an-
swer (if there is any at all); they are called Dropping condition (DC), Anti-
instantiation (AI), and Goal replacement (GR).

4.1 Dropping condition

As we only consider conjunctions in a query, ignoring one of the conjuncts makes
the query more general. For a given conjunctive query, we will call a “subquery”
a conjunctive query that contains a subset of the conjuncts of the original query.
Assume the original query consists of n conjuncts (we will say that the query
has length n). The generalization operator dropping condition (see Operator 1)
returns a subquery of length n − 1. Note that in this case the free variables of
Qgen are a subset of the variables of Q and hence Y (from Definition 5) is empty
because no new variables are introduced; this is why Y is left out of Qgen .

Operator 1 Dropping condition (DC)

Input: Query Q(X) = L1 ∧ . . . ∧ Ln of length n
Output: Generalized query Qgen(X) as a subquery of length n− 1
1: Choose literal Lj from L1, . . . , Ln

2: return L1 ∧ . . . ∧ Lj−1 ∧ Lj+1 ∧ . . . ∧ Ln

There are
(

n
n−1
)

such subqueries of length n − 1. For example, P (x) ∧Q(x)
is a subquery of length 2 of P (x) ∧ Q(x) ∧ R(x) generated by dropping the
condition R(x). The operator DC complies with Definition 4 because it holds
tautologically (that is, in any knowledge base) that a conjunctive query implies
all its subqueries. In particular, when Q(X) is a conjunctive query of length n
and Qgen(X) is a subquery of length n− 1, then |= ∀X (Q(X)→ Qgen(X)).

Proposition 1. DC is a deductive generalization operator.

4.2 Anti-instantiation

With anti-instantiation (see Operator 2) a new variable is introduced in the
query: the free variables of Qgen are equal to the free variables of Q plus one
new variable y; hence Y = {y}. Thus, some conditions in the query are relaxed
and the resulting query also covers answers with different values for y.

Note that here AI not only applies to constants but also to variables. In
particular, AI covers these special cases:

Operator 2 Anti-instantiation (AI)

Input: Query Q(X) = L1 ∧ . . . ∧ Ln of length n
Output: Generalized query Qgen(X,Y) with Y containing one new variable
1: From Q(X) choose a term t such that t is

– either a variable occurring in Q(X) at least twice
– or a constant

2: Choose one literal Lj where t occurs
3: Let L′j be the literal with one occurrence of t replaced with a new variable
4: return L1 ∧ . . . ∧ Lj−1 ∧ L′j ∧ Lj+1 ∧ . . . ∧ Ln

– turning constants into variables: P (a) is converted to P (x) (see [12])
– breaking joins: P (x) ∧ S(x) is converted to P (x) ∧ S(y) (introduced in [4])
– naming apart variables inside atoms: P (x, x) is converted to P (x, y)

For each constant a all occurences must be anti-instantiated (that is, there are∑
a |occ(a,Q(X))| possible anti-instantiations); the same applies to variables v

(that is, there are
∑

v(|occ(v,Q(X))|) possible anti-instantiations) – however,
with the exception that if v only occurs twice (|occ(v,Q(X))| = 2), one oc-
curence of v need not be anti-instantiated due to equivalence . AI is a deductive
generalization operator according to Definition 4 because it holds tautologically
that the literal containing term t implies the literal where t is replaced by a
new variable y; thus, |= ∀X∃y (Lj → L′j), because the term t can be taken as a
witness for the existence of a value for y. The same applies to the whole query:
|= ∀X∃y (Q(X)→ Qgen(X,Y)).

Proposition 2. AI is a deductive generalization operator.

4.3 Goal replacement

Goal replacement (see Operator 3) checks if the body of a rule in the knowledge
base can be mapped (via a substitution) to a subquery. If so, the head of the
rule replaces the subquery (with the substitution applied). In this way goal
replacement potentially introduces new constants and new predicate symbols in
the generalized query and possibly some of the original query variables disappear.
The resulting query may cover a greater range of values and hence lead to an
informative answer for the user. With the GR operator, a single-headed range-
restricted rule from the knowledge base Σ is involved and the property of being
a deductive generalization operator now indeed depends on the knowledge base.
Due to the range-restrictedness of rules, the GR operator does not introduce
new variables. This is why in this case Y (from Definition 5) is the empty set
and dropped from the notation.

For example, the query P (a, y) ∧ P (b, y) can be converted to Q(y) ∧ P (b, y)
given the rule P (x, y)→ Q(y) and the substitution θ = {a/x, y/y}. The difficulty
with GR is that Σ has to be checked for rules with a matching body. Showing that
GR complies with Definition 4 amounts to showing that {∀X (Li1 ∧ . . .∧Lim)→

Operator 3 Goal replacement (GR)

Input: Query Q(X) = L1 ∧ . . . ∧ Ln of length n
Output: Generalized query Qgen(X) containing a replacement literal
1: From Σ choose a single-headed range-restricted rule Li1 ∧ . . .∧Lim → L′ such that

there is a substitution θ for which all literals Li1θ, . . . , Limθ occur in Q(X)
2: Let Lim+1 , . . . , Lin denote the literals of Q(X) apart from Li1θ, . . . , Limθ
3: return Lim+1 ∧ . . . ∧ Lin ∧ L′θ

L′} |= ∀X (Q(X)→ L′θ); and this statement holds because Li1θ ∧ . . . ∧ Limθ is
a subquery of Q(X). Hence, it holds that: Σ |= ∀X (Q(X)→ Qgen(X ′)).

Proposition 3. GR is a deductive generalization operator.

We remark that [4] introduce a more versatile goal replacement operator
using so-called reciprocal clauses that may introduce several new conjuncts (and
hence some further new predicate symbols) in the query; but for sake of simplicity
we do not follow this approach further in this paper.

5 Combining Generalization Operators

We analyze the combination of the three operators DC, AI and GR. To the best
of our knowledge a generalization method that combines these three operators
has not been analyzed so far. In [17] generalization operators are combined with
so-called conditional answers; but the generalization operators themselves are
not combined with each other. Lattice properties of queries have already been
analyzed by [5, 1] for operators that can be uniformly applied to any conjunct of
a query (like for example dropping conditions). In contrast to this, goal replace-
ment deletes some conjuncts and introduces a new conjunct while AI introduces
a new variable; hence the generalization behavior highly depends on applicability
of GR and AI. The analysis of a combination of DC, AI and GR is indeed worth-
while: the main issue is that behavior of operators can have a greater impact
when used in combination with other operators. For instance, maximal succeed-
ing subqueries (MSSs) are important when using dropping conditions alone; see
the in-depth discussion in [5]. Yet, in combination with other operators, the
identification of MSSs may not be the only option to get informative answers.

Moreover, for finding MSSs, [5] shows that a depth-first and top-down search
procedure can efficiently find some of the minimal succeeding subqueries. How-
ever, a disadvantage of this depth-first search might be that the resulting query
is far away from the user’s original intention. Hence when searching for gen-
eralized queries that are close to the original one, an exhaustive search (either
depth-first or breadth-first) up to a user-defined bound of generalization steps
can be a more viable option and was also proposed in [1].

For the combination of DC, AI and GR, we iteratively apply the three gener-
alization operators in all possible ways. In other words, we compute the sets Gi
from Definition 7. In order to avoid unnecessary generation of duplicate queries,

we show in the following some properties of the sets of queries that are obtained
by combining any two of the generalization operators DC, AI and GR. First
we study the combination of AI and DC. As AI introduces a new variable, set-
containment ⊆ is meant up to variable renaming. When AI is followed by DC,
the resulting queries can indeed be found by either dropping conditions alone or
by commuting the operators.

Lemma 1 (DC following AI). Given a query Q(X), let the set of queries
S1 = AI(DC(Q(X))) be obtained by first dropping conditions and then anti-
instantiating, let S′1 = DC(Q(X)) be the set of queries obtained by dropping
conditions, and let the set of queries S2 = DC(AI(Q(X))) be obtained by first
anti-instantiating and then dropping conditions. Then S2 ⊆ S1 ∪ S′1 (up to vari-
able renaming).

When anti-instantiating a term and then dropping the conjunct that contains
the term, the two operations coincide with dropping the conjunct alone (and
hence the query belongs to set S′1). When however after anti-instantiating a
term, a conjunct different from the one containing the term is dropped, the
operators can be applied in reverse order (and hence the query belongs to set
S1). It follows that it suffices to apply AI after DC. In the reverse direction, it
can also be shown that S1 ⊆ S2.

Lemma 2 (GR following DC). Given a query Q(X), let the set of queries
S1 = GR(DC(Q(X))) be obtained by first dropping conditions and then replacing
goals and let the set of queries S2 = DC(GR(Q(X))) be obtained by first replacing
goals and then dropping conditions. Then S1 ⊆ S2.

This lemma holds due to the fact that when a conjunct is dropped from a query
and then a goal replacement with respect to some rule from the knowledge base
is executed on the remaining query, the same can be achieved by first applying
the rule and then dropping the conjunct. Hence we can avoid the application of
the GR operator after the DC operator. The reverse however does not hold: in
some cases DC results in a query to which GR cannot be applied anymore; for
example, while {S(x), C(x)} is the set of generalized queries obtained from the
query Q(x) = A(x)∧B(x)∧C(x) by first applying the rule A(x)∧B(x)→ S(x)
in a goal replacement step and then dropping conditions, the generalized query
C(x) can never be obtained by reversing the operators.

Lemma 3 (GR following AI). Given a query Q(X), let the set of queries
S1 = AI(GR(Q(X))) be obtained by first replacing goals and then anti-instantiating,
let the set of queries S′1 = GR(Q(X)) be obtained by goal replacement alone, and
let the set of queries S2 = GR(AI(Q(X))) be obtained by first anti-instantiating
and then replacing goals. Then S2 ⊆ S1 ∪ S′1 (up to variable renaming).

This is due to the fact that rules that can be applied to anti-instantiated queries,
can also be applied to the original query first and then applying the anti-
instantiation: Assume that some term t in the original query is anti-instantiated
to the new variable y; then the substitution θ used in goal replacement maps

some variable of the rule to y. However the same can be achieved by first ap-
plying goal replacement by letting θ map the variable to t and then (if it is still
contained in the replacement literal) anti-instantiating it to y. That is, we only
have to apply AI to queries obtained by GR. The reverse direction does not hold
because after AI some rule used for GR may not be applicable anymore.

Q(X)

DC

DC

DC
...

AI
...

AI

AI
...

AI

AI

AI
...

GR

DC

DC
...

AI
...

AI

AI
...

GR

DC
...

AI
...

GR
...

G0:

G1:

G2:

G3:

Fig. 2. Operator tree

Based on the above lemmata, we can now conclude that in order to compute
the sets of generalized queries Gi the three operators under scrutiny need only
be applied in a certain order. This is illustrated in Figure 2.

Theorem 1 (Operator ordering). When combining the generalization oper-
ators DC, AI and GR, the following computations can be avoided: GR following
DC, DC following AI, and GR following AI.

With this result, the search for generalized queries can be much more efficient.
However the actual efficiency gain depends on the applicability of GR and AI:
when GR is applicable, it suffices to apply it in the first generalization steps
before any other operators, followed by DC steps and lastly AI steps. But even
if GR is not applicable we never even have to check for its applicability after
DC or AI (this check includes finding matching rules and is hence quite expen-
sive). As AI generates a lot of generalized queries, with our result we can apply
it only in the last generalization steps without missing out any generalized query.

Example 1. We now give a comprehensive example. Assume knowledge base Σ =
{Ill(Pete,Flu), Ill(Mary,Cough),Treat(Mary,Medi), Ill(x,Flu) → Treat(x,Medi)}.
The user asks the query Q(X) = Ill(x,Flu) ∧ Ill(x,Cough) which fails in Σ
(under both exact and disjunctive answer semantics). The generalization sets up
to G4 are shown in Table 1. These four sets comprise all possible generalizations
of Q(X). Already G1 can give informative answers (like for example Ill(Pete,Flu)
or Treat(Mary,Medi)∧ Ill(Mary,Cough) and hence might satisfy the user’s needs.

6 Discussion and Conclusion

Although a given query fails, a knowledge base might still be able to return
informative answers to a slightly modified query. We provided a profound anal-

DC(Q(X)) {Ill(x,Cough) , Ill(x,Flu)}
∪AI(Q(X)) ∪{Ill(y,Flu) ∧ Ill(x,Cough) , Ill(x, y) ∧ Ill(x,Cough),

Ill(x,Flu) ∧ Ill(x, y)}
∪GR(Q(X)) ∪{Treat(x,Medi) ∧ Ill(x,Cough)}
DC(DC(Q(X))) {ε}
∪AI(DC(Q(X))) ∪{Ill(x, y)}
∪AI(AI(Q(X))) ∪{Ill(y, y′) ∧ Ill(x,Cough), Ill(y,Flu) ∧ Ill(x, y′),

Ill(x, y) ∧ Ill(x, y′) }
∪DC(GR(Q(X))) ∪{Treat(x,Medi)}
∪AI(GR(Q(X))) ∪{Treat(y,Medi) ∧ Ill(x,Cough), Treat(x, y) ∧ Ill(x,Cough),

Treat(x,Medi) ∧ Ill(x, y)}
GR(GR(Q(X))) = ∅
AI(AI(AI(Q(X)))) {Ill(y, y′) ∧ Ill(x, y′′)}
∪AI(DC(GR(Q(X)))) ∪{Treat(x, y)}
∪AI(AI(GR(Q(X)))) ∪{Treat(y, y′) ∧ Ill(x,Cough),

Treat(y,Medi) ∧ Ill(x, y′), Treat(x, y) ∧ Ill(x, y′)}
DC(DC(DC(Q(X)))) = AI(DC(DC(Q(X)))) = AI(AI(DC(Q(X)))) =
DC(DC(GR(Q(X)))) = ∅
AI(AI(AI(GR(Q(X))))) {Treat(y, y′) ∧ Ill(x, y′′)}
AI(AI(AI(AI(Q(X))))) = AI(AI(DC(GR(Q(X))))) = ∅
Table 1. Generalization sets G1 to G4 for query Q(X) = Ill(x,Flu) ∧ Ill(x,Cough)

ysis of the combination of the three operators DC, AI and GR that stepwise
generalize conjunctive queries with positive and negative literals. A prototype
implementation using a current theorem proving system (SOLAR [14]) is under
development. One open issue is to avoid overgeneralization that leads to queries
far from the user’s original intent; e.g., the AI operator can be prevented from
generating unrestricted predicates (like Ill(x, y)) by reinstantiating and hence
computing neighborhood queries in the sense of [17]. Moreover, generalization
operators could for example be restricted by defining user preferences on the
literals in a query. An extension of our approach might consider other logical
settings (e.g., queries of a more general form, nonmonotonic reasoning or “con-
ditional answers” [10, 17]). Another topic of future work may be the development
of an algorithm that directly and incrementally returns informative answers in
our setting (as done by [9] for RDF queries and ontologies) without computing
the sets of generalized queries.

References

1. Patrick Bosc, Allel HadjAli, and Olivier Pivert. Incremental controlled relaxation
of failing flexible queries. JIIS, 33(3):261–283, 2009.

2. Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael Minock, Gladys Chow, and
Chris Larson. CoBase: A scalable and extensible cooperative information system.
JIIS, 6(2/3):223–259, 1996.

3. Luc de Raedt. Induction in logic. In MSL-96, pages 29–38. AAAI Press, 1996.

4. Terry Gaasterland, Parke Godfrey, and Jack Minker. Relaxation as a platform for
cooperative answering. JIIS, 1(3/4):293–321, 1992.

5. Parke Godfrey. Minimization in cooperative response to failing database queries.
IJCS, 6(2):95–149, 1997.

6. Parke Godfrey, Jack Minker, and Lev Novik. An architecture for a cooperative
database system. In ADB-94, volume 819 of LNCS, pages 3–24. Springer, 1994.

7. Nikos Gorogiannis and Anthony Hunter. Merging first-order knowledge using di-
lation operators. In FoIKS2008, volume 4932 of LNCS, pages 132–150. Springer,
2008.

8. Raju Halder and Agostino Cortesi. Cooperative query answering by abstract in-
terpretation. In SOFSEM2011, volume 6543 of LNCS, pages 284–296. Springer,
2011.

9. Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. Query relaxation
in RDF. In J. Data Semantics X, volume 4900 of LNCS, pages 31–61. Springer,
2008.

10. Katsumi Inoue, Koji Iwanuma, and Hidetomo Nabeshima. Consequence finding
and computing answers with defaults. J. Intell. Inf. Syst., 26(1):41–58, 2006.

11. Koji Iwanuma and Katsumi Inoue. Minimal answer computation and SOL. In
JELIA2002, volume 2424 of LNCS, pages 245–258. Springer, 2002.

12. Ryszard S. Michalski. A theory and methodology of inductive learning. Artificial
Intelligence, 20(2):111–161, 1983.

13. Amihai Motro. Flex: A tolerant and cooperative user interface to databases. IEEE
Transactions on Knowledge & Data Engineering, 2(2):231–246, 1990.

14. Hidetomo Nabeshima, Koji Iwanuma, Katsumi Inoue, and Oliver Ray. SOLAR:
An automated deduction system for consequence finding. AI Communications,
23(2-3):183–203, 2010.

15. Olivier Pivert, Hélène Jaudoin, Carmen Brando, and Allel HadjAli. A method
based on query caching and predicate substitution for the treatment of failing
database queries. In ICCBR 2010, volume 6176 of LNCS, pages 436–450. Springer,
2010.

16. Gordon Plotkin. Automatic methods of inductive inference. PhD thesis, University
of Edinburgh, 1971.

17. Chiaki Sakama and Katsumi Inoue. Negotiation by abduction and relaxation. In
AAMAS2007, pages 1010–1025. IFAAMAS, 2007.

18. Myung Keun Shin, Soon-Young Huh, and Wookey Lee. Providing ranked cooper-
ative query answers using the metricized knowledge abstraction hierarchy. Expert
Systems with Applications, 32(2):469–484, 2007.

