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Abstract. Fairness in Artificial Intelligence is a major requirement for
trust in ML-supported decision making. Up to now fairness analysis de-
pends on human interaction – for example the specification of relevant
attributes to consider. In this paper we propose a subgroup detection
method based on clustering to automate this process. We analyse 10
(sub-)clustering approaches with three fairness metrics on three datasets
and identify SLINK as an optimal candidate for subgroup detection.
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1 Introduction

Nowadays a great variety of AI systems are spread over the digital world and
affect the lives of millions of people every day. Over the past years there has
been a strive for optimizing performance of such systems by better and faster
technologies – but modern ML requires for other inalienable objectives, too. The
societal impact of decisions of AI systems has to be considered along the objective
of maximizing the prediction accuracy. As a consequence, ML models should also
be checked carefully for providing equal treatment of individuals from different
ethnics, races, or sexes. Especially, the intersections of sensitive characteristics –
or those characteristics not obviously involved in discrimination – make judging
the model behavior challenging when facing complex data. Additionally, the
huge number of possible subgroups growing exponentially with the number of
features inside data makes it infeasible to test the model’s behavior towards each
subgroup. Thus, automation of fairness testing is required to solve this issue.

We propose two subgroup detection methods based on an unsupervised clus-
tering. The computed clusters serve as subgroups for the fairness evaluation and
prototypes for the generation of patterns defining subgroups. Furthermore, we
compare different clustering algorithms on their performance to identify sub-
groups for a fairness assessment of a binary classifier under three common fair-
ness criteria and three fairness-related datasets. In Section 2 we give an overview
over related work on automated subgroup fairness and Section 3 introduces the
theory for our methods of subgroup detection, that are explained in Section 4.
Section 5 describes our experimental setting and discusses the results. Finally,
we the summarize key findings and give an outlook into future work in Section 6.
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2 Related Work

There has been an uprising number of tools being developed to aid data scientists
and developers with the investigation and improvement of their developed ML
models. They usually support the model selection or optimization phase by di-
verse visualizations of data and the model performance. Recently, there evolved
an advance towards the assessment of model fairness to meet the demands of
society for equality in AI. However, many tools require expert knowledge as they
partly rely on user interaction via controls or parameters.

The tools Boxer [5] and Fairkit [7] let the user interactively explore and com-
pare the behavior of multiple models. They opt for the identification of intersec-
tional bias in the model but require the selection of subgroups to investigate for
discrimination. The What-If tool [13] yields insights into local and global modal
behavior in various scenarios, performs an intersectional analysis for a chosen
fairness objective and automatically adapts the model’s classification threshold.
The framework of Morina et al. [9] comprises a suite of metrics for evaluating
and estimating intersectional fairness but also does not discover subgroups au-
tomatically. The FairVis tool [2] was designed to identify the intersectional bias
of ML models by visualizations. Despite possible user interaction, automatically
generated subgroups are suggested and the subgroup performance and fairness
of the model are presented. These subgroups are found by a k-means clustering
and extracting patterns that describe the makeup of the cluster members. The
dominant features in a cluster are ranked by the feature entropy quantifying the
feature’s uniformity. Our approach uses a similar technique that directly uses the
clustering results and the feature entropy with a threshold instead of a ranking.

In contrast, the Divexplorer project [10] provides automatic subgroup detec-
tion by frequent-pattern mining. An exhaustive search through possible itemsets
(i.e. patterns to match data instances to) is carried out and only itemsets above a
support threshold are considered while pruning others from the search tree. The
divergence of the model behavior between a subgroup of instances complying
to a mined pattern and the full dataset is assessed by an outcome function for
classification or ranking tasks that evaluates fairness by the difference between
the FPR or FNR of a subgroup and the global rate. The DENOUNCER [8]
system discovers subgroups with a low prediction accuracy by pattern graph
traversal, applies a support threshold to the attribute-value patterns filtering
out insignificant patterns and prunes for the most general patterns.

3 AI Fairness

Generally, one can distinguish individual (similarity-based) and group (statisti-
cal) fairness criteria. Individual fairness refers to the discrimination by the model
on an individual level (per instance) and is expressed as the different behavior
of the model wrt. similar individuals although they should be treated similarly.
This work is focused on the assessment of group fairness of a given classification
model that tests whether the model systematically discriminates against a cer-
tain subgroup of instances [6]. The subgroups of interest are therefore usually
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defined for a set of protected attributes (such as sex or nationality) but generally
involve the intersection of multiple protected attributes. Hence we formalize a
dataset as D = {x1, . . . , xn} with the set of attributes A = {A1, . . . , Ap} that
comprises n instances xi, ∀i ∈ {1, . . . , n}. The active domain of an attribute
Aj ∈ A is then denoted as Dom(Aj) and describes all the possible values for the
feature Aj . The active domain Dom(D) is then the cartesian product of all its
attributes’ active domains. Thus, each instance x ∈ D is from the active domain
Dom(D) and we write the value of x for attribute Aj ∈ A as x(Aj). To define
metrics for measuring group fairness, we first introduce protected attributes and
patterns to match instances to certain groups similar to the definitions in [8,10].

Definition 1. Pattern. Let D a dataset and A = {A1, . . . , Aq} ⊆ A a non-
empty subset of the dataset attributes. Then, a tuple of attribute values P =
(a1, . . . , aq) ∈ Dom(A) is a pattern over dataset D. An instance x ∈ Dom(D)
satisfies such a pattern P if the respective attribute values of x match the attribute
values of P : If ∀Aj ∈ A : x(Aj) = aj, then x ⊨ P

A classification model M̂ can be trained on a dataset D labeled by the true
classes Y = {y1, . . . , yz} by M : D 7→ Y to learn predicting the class ŷ = M̂(x) of
any new input instance x. The model M̂ serves as an approximation of the real
mapping M : Dom(D) 7→ Y on Dom(D). We also call M̂ the predictor and in
the following assume a binary classification model, i.e. Y = {0, 1}, where y = 1
corresponds to the positive or favorable class label and y = 0 to the negative or
unfavorable class label. In case of a score M̂(x) ∈ [0, 1] estimating the probability
of an instance to belong to the favorable class a t-threshold rule [3] rule can be
used to discretize the prediction as ŷ = 1 if M̂(x) ≥ t or ŷ = 0 otherwise.

A pattern P = (a1, . . . , aq) partitions dataset D into two disjoint subgroups
based on the protected attribute values. This partitions are the protected (P
satisfied) and unprotected (P not satisfied) subgroups DP = {x ∈ D | x ⊨ P} and
DP̄ = {x ∈ D | x ⊭ P} = D \DP , respectively. The different behavior regarding
the prediction of the favorable or unfavorable class label on the subgroups by
a classification model M̂ is tested for fairness violations. The probabilities of a
model M̂ to predict the positive or negative class label are denoted as P(ŷ = 1)
and P(ŷ = 0), respectively. Given a pattern P over dataset D the probability for
instances from the protected subgroup to be predicted the class label c ∈ {0, 1} is
written as P(ŷ = c | x ∈ DP ). Furthermore, the probability for a correct or wrong
prediction of class c given the groundtruth class label g and one of the subgroups
is expressed by P(ŷ = c | y = g, x ∈ DP ). Notations for the probabilities of true
classes (according to mapping M) and the unprotected group are analogous.

3.1 Subgroup Fairness Metrics

There exist various subgroup fairness metrics that mostly rely on the rates com-
puted from confusion matrices [6,12] such as the positive predictive value (PPV)
or TPR to estimate the chances for DP and DP̄ . We do not focus on any spe-
cific group fairness metric but consider multiple of them as there are various,
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sometimes opposing opinions on the justification of equal treatment. Instead, we
define in the following three common fairness criteria that we will use in our
evaluation to ensure a broad comparison.

Statistical parity (Def. 2) is a fairness definition based on the predicted out-
come ŷ = M̂(x) and is satisfied if DP has the same probability of getting a
positive prediction (ŷ = 1) from the model as DP̄ [12]. A fair classifier predicts
the favorable label with a probability independent from the protected attribute
values but the bias against instances belonging to multiple protected groups
might be magnified [11]. Subgroup fairness based on equal opportunity (Def. 3)
is achieved if the TPR of DP is equal to the TPR of DP̄ . Regardless of their
subgroup membership, the chance for each individual x ∈ D to get a positive
prediction if they actually belong to the favorable class should be the same. As a
consequence of Eq. 2, every individual from the subgroup should have the same
probability of being assigned the unfavorable class label if they actually belong
to the favorable class. The equalized odds subgroup fairness (Def. 4) is a general-
ization of equal opportunity as it requires the equality of the TPRs and FPRs of
the both subgroups. In addition to the equal chance of getting a correct positive
prediction also the chance of being incorrectly assigned the favorable class label
has to be equal between the protected and unprotected subgroups.

Definition 2. Statistical parity. Let D a dataset. A classifier M̂ satisfies
statistical parity wrt. a pattern P over D if:

P(ŷ = 1 | x ∈ DP ) = P(ŷ = 1 | x ∈ DP̄ ) (1)

Definition 3. Equal opportunity. Let D a dataset and M the groundtruth
mapping. A classifier M̂ satisfies equal opportunity wrt. a pattern P over D if

P(ŷ = 1 | y = 1, x ∈ DP ) = P(ŷ = 1 | y = 1, x ∈ DP̄ ). (2)

Definition 4. Equalized odds. Let D a dataset, M the groundtruth mapping
and g ∈ {0, 1}. A classifier M̂ satisfies equalized odds wrt. pattern P over D if

P(ŷ = 1 | y = g, x ∈ DP ) = P(ŷ = 1 | y = g, x ∈ DP̄ ) (3)

Commonly, the strict equality of fairness definitions is relaxed to accept also
similar chances for predictions by M̂ as fair, e.g., by ϵ-differential fairness def-
initions [4,9]. We prefer a simpler relaxation as provided by the “AI Fairness
360” toolkit [1] that relies on the difference between the probabilities for DP and
DP̄ (Table 1). The fairness of M̂ wrt. stat. parity and eq. opportunity is calcu-
lated as the difference between the probabilities given x ∈ DP̄ or x ∈ DP . As
equalized odds (Eq. 3) requires the equality of two probabilities, the average of
the probability differences denoted as Faod in Table 1 is calculated. Each metric
F ∈ {Fspd, Feod, Faod} yields a value in [−1, 1]. If F = 0, the evaluated classifier
M̂ is considered perfectly fair wrt. P and the fairness definition as the confusion
matrix rates to estimate the probabilities coincide for DP and DP̄ (i.e., under
the same conditions the prediction is independent of the membership in DP or
DP̄ ). A value F > 0 corresponds to discrimination against individuals in DP or
favoritism of individuals in DP̄ by M̂ and F < 0 indicates the opposite.
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Definition Fairness Metric

Statistical parity Fspd = P(ŷ = 1 | x ∈ DP̄ )− P(ŷ = 1 | x ∈ DP )
Eq. opportunity Feod = P(ŷ = 1 | y = 0, x ∈ DP̄ )− P(ŷ = 1 | y = 0, x ∈ DP )

Equalized odds Faod =
1

2

[
P(ŷ = 1 | y = 0, x ∈ DP̄ )− P(ŷ = 1 | y = 0, x ∈ DP )

+ P(ŷ = 1 | y = 1, x ∈ DP̄ )− P(ŷ = 1 | y = 1, x ∈ DP )
]

Table 1. Subgroup Fairness Metrics

4 Automatic Subgroup Detection

Assigning instances of a dataset to meaningful groups that mirror high similar-
ities between the instances is challenging. Clustering algorithms provide unsu-
pervised techniques to compute such a grouping C, called clustering, that assigns
the instances x ∈ D to clusters C1, . . . , Ck. Each pair x, y ∈ Ci for i ∈ {1, . . . , k}
shares some similarity as defined by the type of clustering, the algorithm pa-
rameters and the similarity/distance measure. For example, a centroid-based
clustering expresses similarity by cluster membership wrt. the proximity to the
computed centroids representing the clusters and a density-based clustering dis-
tinguishes dense regions of instances, that are considered the clusters, from the
sparse regions, which are marked as containing outliers. With the notion of a clus-
tering, we automatically evaluate the fairness of a classification model with our
previous fairness metrics in two ways. A clustering C specifies a set of clustering-
based patterns P C (Def. 5) defining DP and DP̄ according to the established
clusters. The fairness of a classifier M̂ can then be evaluated for the subgroups
of instances that comply to C. To this end, the cluster labels of the instances
x ∈ D are added as an artificial attribute AC to D. For each pattern r = P C

i ∈ P C

we can assess the fairness of M̂ with any of the mentioned fairness metrics by
comparing the treatment of the clustering-based protected and unprotected sub-
group Dr = {x ∈ D | x ⊨ P C

i } and Dr̄ = {x ∈ D | x ⊭ P C
i }, respectively. The

metric values are aggregated over all pairs of subgroups Dr and Dr̄ as defined
by the patterns (i.e. over all clusters).

Definition 5. Clustering-based pattern. Let C = {C1, . . . , Ck} a clustering
of dataset D with an attribute set A ∪ {AC} that was extended by the attribute
AC of the clustering labels of C. We call P C

i = (i) a clustering-based pattern over
D and denote the set of all clustering-based patterns over D as P C = {P C

i }ki=1.
An instance x ∈ D satisfies P C

i if x belongs to cluster Ci ∈ C.

Furthermore, our system extracts more general patterns from C to perform
the subgroup fairness analysis. We use the cluster feature entropy [2] to identify
dominant features in C1, . . . , Ck from which patterns are extracted. The cluster
feature entropy Hi,j quantifies the distribution of values for attribute Aj in
cluster Ci and is calculated for each cluster and feature separately. An entropy
value Hi,j close to zero indicates a single dominant value at attribute Aj in Ci
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whereas high values indicate a frequent occurrence of multiple values. A uniform
distribution of all values across the cluster has maximal entropy.

Definition 6. Normalized feature entropy. Let C = {C1, . . . , Ck} a cluster-
ing of dataset D with attributes A = {A1, . . . , Ap}. We define the normalized
cluster feature entropy for cluster Ci ∈ C and feature Aj ∈ A where Ni = |Ci|
and Ni,j,v = |{x ∈ Ci | x(Aj) = v}| as

Hi,j = − 1

log2 |Dom(Aj)|
·

∑
v∈Dom(Aj)

Ni,j,v

Ni
· log2

(
Ni,j,v

Ni

)
(4)

However, it is impossible to define an appropriate global entropy threshold
t when using the definition of Cabrera et al. [2] as it does not account for the
varying sizes of the active domains A. As a consequence, it often fails to classify
non-dominant features with larger active domains as such in clusters without
a clear dominant value but potentially multiple of them when t was tuned for
smaller active domains. To improve their definition, we also normalize the en-
tropy by the logarithm log2(|Dom(Aj)|) of the number of possible values for
feature Aj in Def. 6. This ensures entropy values between 0 and 1 such that t
can be picked independently of the size of the active domain of a feature.

For example, consider the three value distributions (frequencies) a = [0.025,
0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.8], b = [0.1, 0.1, 0.1, 0.1, 0.6] and
c = [0.25, 0.25, 0.5], respectively. The first distribution a clearly shows a domi-
nant feature in the cluster (80%), b also expresses a single value making up most
of the feature but less significantly (60%), and c represents a scenario where still
one value occurs more often than others but the feature is not really dominant.
The feature entropies are Ha ≈ 1.32, Hb ≈ 1.77 and Hc = 1.5, respectively.
Other than expected, the Hb does not reflect a dominant feature and, in con-
trast, Hc is lower although the distribution c does not dominate the feature as
much as b. Instead of this misleading values, one can normalize them to obtain
Ha

log2 9 ≈ 0.42, Hb

log2 5 ≈ 0.76 and Hc

log2 3 ≈ 0.95 accounting for the feature diversity.

Definition 7. Entropy-based pattern. Let C = {C1, . . . , Ck} a clustering of
dataset D with attribute set A = {A1, . . . , Ap} and threshold t ≥ 0. We then
define an entropy-based pattern over D as P t

i = (a1, . . . , aq) ∈ Dom(Ai) where
Ai = {Aj ∈ A | Hi,j < t} contains the dominant features of cluster Ci ∈ C and
aj ∈ Dom(Aj) is the most frequent or dominant value of Aj ∈ Ai in Ci. The
set of entropy-based patterns for all clusters of C, {P t

i }ki=1, is denoted as P t.

From all dominant features of a cluster, one pattern is created for each cluster
and used for the fairness metric calculation: all features Aj with Hi,j ≤ t are
collected in a subset of attributes Ai = {Aj ∈ A | Hi,j < t} for each Ci ∈ C.
An entropy-based pattern P t

i (Def. 7) is then derived from each Ci comprising
the most frequent value of each dominant attribute Aj ∈ Ai. In contrast to a
clustering-based pattern P C

i , that is satisfied by an instance x ∈ D if x belongs to
Ci, an entropy-based pattern P t

i is satisfied by x according to Def. 1. Hence, an
entropy-based pattern is evaluated wrt. specific attribute values as determined
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by C and t whereas clustering-based patterns are evaluated value-agnostic and
specific attribute values are considered only implicitly via the computation of
C. For a hard partitional clustering, where each instance belongs to exactly one
of the pairwise disjoint clusters, it holds that DPi ∩ DPj = ∅ for each pair of
clustering-based patterns Pi, Pj ∈ P C . However, two entropy-based patterns P t

i

and P t
j extracted from different clusters Ci, Cj ∈ C might coincide as the clusters

might have the same dominant features and values, i.e., Ai = Aj and P t
i = P t

j .
For our evaluation, we remove the duplicate entropy-based patterns before the
subgroup fairness assessment and report the duplication rate.

5 Results

We evaluated our system on three fairness-related datasets: ProPublica’s COM-
PAS dataset 1, the South German Credit dataset 2 and the Medical Expenditure
Panel Survey 3 dataset of the year 2015 (panel 19). We refer to them as COM-
PAS, Credit and MEPS19, respectively. The COMPAS data (n = 6172, p = 7)
was taken as provided in the FairVis [2] repository incl. predictions. We trained
LightGBM classifiers (gradient boosting decision tree) for the Credit (n = 1000,
p = 20) and MEPS dataset (n = 15830, p = 40). Our system first preprocessed
the data by encoding categorical features and min-max normalizing before clus-
tering. To analyze the suitability of clustering models for our subgroup detection
task, we compared the proposed method for the following (subspace) clustering
techniques of different types: k-Means, DBSCAN, OPTICS, Spectral Clustering,
SLINK, Ward, BIRCH, SSC-BP, SSC-OMP, and EnSC. We tested a small set of
parameter values individually on each algorithm and dataset. The fairness met-
rics producing the best combination of fairness violation indication and clustering
performance was then reported. We selected the run that maximizes the product
of silhouette score SC and mean absolute error of the clustering-induced sub-
group prediction accuracy AccM̂ (DPC

i
), i = 1, . . . , k, as compared to the global

accuracy AccM̂ (D): argmax
C

(
SC · 1

|C| ·
∑

PC
i ∈PC

∣∣∣AccM̂ (DPC
i
)−AccM̂ (D)

∣∣∣)
The experimental results are shown in Table 2 - 4. Each table represents a

dataset and both subgroup detection methods with one row for the best run. The
columns display the mean (Avg), standard deviation (Std) and absolute mean
(Abs) values across all clustering- or entropy-induced subgroups as measured
by the fairness metrics. The clustering model with the highest absolute mean
is highlighted for each fairness criterion by bold numbers for the three reported
quantities. On the COMPAS dataset (Table 2) the best results were obtained for
SLINK throughout all fairness metrics and both subgroup detection methods.
Especially the entropy-based subgroups detected by SLINK clearly outperformed
in the absolute mean of the metric values when compared to the other clustering

1 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
2 https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
3 https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=

HC-183

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-183
https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC-183
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Algorithm Statistical Parity Equal Opportunity Equalized Odds
Avg Std Abs Avg Std Abs Avg Std Abs

k-Means −0.0074 0.3017 0.2513 0.0592 0.3100 0.2454 −0.0071 0.2877 0.2315
DBSCAN −0.1446 0.1914 0.1992 −0.0880 0.1516 0.1491 −0.1242 0.1763 0.1733
OPTICS −0.0592 0.1778 0.1580 0.0102 0.1790 0.1439 −0.0466 0.1651 0.1415
Spectral 0.0328 0.3558 0.3081 0.1388 0.3755 0.3198 0.0254 0.3305 0.2749
SLINK 0.0343 0.4057 0.3580 0.2474 0.4373 0.4217 0.0767 0.3457 0.2821
Ward −0.0376 0.2711 0.2233 0.0163 0.2487 0.1859 −0.0316 0.2460 0.1984
BIRCH −0.1032 0.1744 0.1710 −0.0506 0.1376 0.1274 −0.0810 0.1449 0.1411
SSC-OMP −0.0160 0.2115 0.1725 0.0205 0.1679 0.1386 −0.0167 0.1802 0.1460
SSC-BP −0.0993 0.2078 0.1949 −0.0490 0.1699 0.1467 −0.0851 0.1863 0.1712
EnSC −0.1356 0.1978 0.2018 −0.0798 0.1538 0.1470 −0.1172 0.1808 0.1765

k-Means −0.0985 0.2323 0.2022 −0.0459 0.2076 0.1700 −0.0918 0.2269 0.1891
DBSCAN −0.2115 0.1860 0.2265 −0.1332 0.1417 0.1630 −0.1985 0.1875 0.2143
OPTICS −0.1517 0.1830 0.1850 −0.0842 0.1509 0.1498 −0.1263 0.1737 0.1580
Spectral −0.0601 0.2997 0.2496 0.0290 0.3288 0.2477 −0.0581 0.2728 0.2188
SLINK −0.0158 0.4009 0.3487 0.1725 0.4312 0.3761 0.0138 0.3524 0.2783
Ward −0.1211 0.2274 0.2081 −0.0748 0.1620 0.1517 −0.1190 0.2148 0.1920
BIRCH −0.1860 0.1854 0.2069 −0.1010 0.1417 0.1423 −0.1665 0.1794 0.1885
SSC-OMP −0.0781 0.1920 0.1664 −0.0305 0.1525 0.1295 −0.0724 0.1677 0.1456
SSC-BP −0.0993 0.2128 0.1861 −0.0566 0.1502 0.1249 −0.0914 0.1968 0.1629
EnSC −0.1839 0.1842 0.2117 −0.1167 0.1358 0.1500 −0.1713 0.1795 0.1959

Table 2. Clustering- (top) & Entropy-based (bottom) Subgroup Fairness COMPAS

Algorithm Statistical Parity Equal Opportunity Equalized Odds
Avg Std Abs Avg Std Abs Avg Std Abs

k-Means −0.0096 0.2210 0.2062 0.0120 0.0738 0.0628 −0.0665 0.1838 0.1556
DBSCAN −0.0059 0.2911 0.2097 0.0578 0.1562 0.1000 −0.0876 0.2957 0.1928
OPTICS −0.0051 0.2616 0.2029 0.0253 0.0524 0.0317 0.0035 0.1379 0.0988
Spectral −0.0323 0.3207 0.2480 0.0761 0.3091 0.1340 −0.1124 0.3216 0.2560
SLINK −0.0120 0.4338 0.3123 0.3691 0.5306 0.4103 0.0006 0.4249 0.3332
Ward −0.0006 0.1744 0.1442 0.0055 0.0980 0.0655 −0.0320 0.1569 0.1232
BIRCH −0.0002 0.1787 0.1509 0.0051 0.0967 0.0632 −0.0361 0.1580 0.1291
SSC-OMP 0.0032 0.0461 0.0375 0.0033 0.0277 0.0232 −0.0011 0.0279 0.0229
SSC-BP −0.0117 0.1286 0.0898 −0.0003 0.0428 0.0299 −0.0097 0.0514 0.0359
EnSC −0.0217 0.1377 0.1070 −0.0034 0.0298 0.0227 −0.0239 0.0824 0.0677

k-Means −0.0558 0.2130 0.1940 −0.0094 0.0591 0.0469 −0.0969 0.2065 0.1694
DBSCAN −0.0171 0.2516 0.1717 0.0907 0.2258 0.1434 −0.0967 0.2829 0.1814
OPTICS −0.0878 0.3209 0.2763 −0.0122 0.0694 0.0575 −0.2370 0.3103 0.3179
Spectral −0.0504 0.3193 0.2469 0.0631 0.3119 0.1282 −0.1268 0.3190 0.2617
SLINK −0.0108 0.4339 0.3135 0.3605 0.5374 0.4017 −0.0293 0.4155 0.3033
Ward −0.0164 0.1915 0.1682 0.0080 0.1180 0.0786 −0.0845 0.2022 0.1661
BIRCH −0.0354 0.2032 0.1775 0.0023 0.1177 0.0754 −0.0989 0.2122 0.1783
SSC-OMP 0.0407 0.0612 0.0499 0.0048 0.0173 0.0151 0.0223 0.0324 0.0240
SSC-BP −0.0307 0.1802 0.1326 −0.0010 0.0352 0.0253 −0.0824 0.2285 0.1469
EnSC −0.0407 0.1384 0.0857 −0.0001 0.0333 0.0232 −0.0684 0.1997 0.1152

Table 3. Clustering- (top) & Entropy-based (bottom) Subgroup Fairness Credit

results with absolute mean values from ≈ 0.28-0.42. The eq. opportunity mean
values revealed a skew towards the detection of mainly discriminated subgroups
or subgroups with a higher degree of discrimination than the degree of favoriza-
tion for the other subgroups by SLINK in both detection methods. The other
fairness metrics were balanced between discriminated and favored subgroups as
indicated by the mean metric values close to zero. The subspace clustering algo-
rithms showed no improvement over the conventional clustering algorithms and
the spectral clustering also performed quite good on the COMPAS dataset. The
duplication rate of the entropy-induced subgroups was between 0 and 0.5.

Table 3 displays again outstanding results (Abs ≈ 0.30-0.41) of SLINK across
both detection methods and all fairness criteria. Only OPTICS achieved a higher
absolute mean value of 0.3179 under eq. odds and entropy-induced subgroups
on the Credit dataset. For the SLINK clustering, again we observed an even
more significant skew towards the detection of discriminated subgroups over fa-
vored ones for the eq. opportunity criterion. The OPTICS clustering, in contrast,
showed a skew towards the favored subgroups with an average eq. odds value
of -0.2370 across the clustering-induced subgroups. The spectral clustering also
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Algorithm Statistical Parity Equal Opportunity Equalized Odds
Avg Std Abs Avg Std Abs Avg Std Abs

k-Means −0.0279 0.3180 0.2050 0.2343 0.3675 0.4002 0.0862 0.3058 0.2630
DBSCAN −0.0566 0.4154 0.3009 0.5054 0.0395 0.5054 0.1176 0.2836 0.2573
OPTICS 0.1323 0.0002 0.1323 0.5806 0.0118 0.5806 0.3097 0.0058 0.3097
Spectral −0.6962 0.4504 0.7958 −0.2681 0.4133 0.4830 −0.5098 0.3938 0.6090
SLINK −0.7121 0.4276 0.8031 −0.1229 0.4810 0.4834 −0.4814 0.3629 0.5461
Ward 0.0029 0.2636 0.1810 0.2988 0.3222 0.4111 0.1311 0.2565 0.2549
BIRCH −0.0336 0.2998 0.2068 0.2503 0.3432 0.4003 0.0930 0.2835 0.2625
SSC-OMP 0.1175 0.0585 0.1306 0.4805 0.2388 0.5339 0.2613 0.1299 0.2904
SSC-BP 0.1174 0.0623 0.1321 0.4805 0.2415 0.5350 0.2613 0.1321 0.2913
EnSC 0.1127 0.0662 0.1293 0.4429 0.2386 0.4927 0.2419 0.1311 0.2700

k-Means 0.0082 0.3082 0.2031 0.3665 0.3484 0.4679 0.1574 0.3043 0.2981
DBSCAN −0.0866 0.3894 0.2709 0.5370 0.0027 0.5370 0.1264 0.2910 0.2661
OPTICS 0.1322 0.0001 0.1322 0.5826 0.0002 0.5826 0.3106 0.0001 0.3106
Spectral −0.7765 0.2673 0.7902 −0.2653 0.4100 0.4788 −0.5528 0.2827 0.5818
SLINK −0.7906 0.2507 0.8043 −0.1163 0.4895 0.4900 −0.5222 0.2675 0.5262
Ward 0.0306 0.2562 0.1889 0.3955 0.3076 0.4796 0.1832 0.2535 0.2930
BIRCH −0.0344 0.3370 0.2373 0.3123 0.3866 0.4807 0.1148 0.3271 0.3180
SSC-OMP 0.1310 0.0016 0.1310 0.5341 0.0010 0.5341 0.2656 0.1119 0.2866
SSC-BP 0.1408 0.0102 0.1408 0.5400 0.0085 0.5400 0.2571 0.1404 0.2893
EnSC 0.1405 0.0092 0.1405 0.5411 0.0083 0.5411 0.2962 0.0061 0.2962

Table 4. Clustering- (top) & Entropy-based (bottom) Subgroup Fairness MEPS19

performed well as measured by stat. parity and eq. odds for both detection meth-
ods. For the Credit dataset the observed performance of the subspace clustering
algorithms was weaker than the other algorithms. We observed a duplication rate
of 0 for all reported trials except for the SCC-OMP model (single duplication).

The MEPS19 dataset (Table 4) yielded more variety regarding the best per-
formance. We observed for both detection methods the best performance in stat.
parity for SLINK (≈ 0.80), in eq. opportunity for OPTICS (≈ 0.58) and in eq.
odds for spectral clustering (≈ 0.60 and 0.58). The spectral clustering produced
similarly good results as the SLINK clustering for each of the detection meth-
ods. In contrast to the other two datasets, our experiments showed more shift
towards favored or discriminated subgroups as detected by any of the computed
clusterings for the MEPS19 dataset. Furthermore, we observed (nearly) equality
of the absolute value of the mean and the absolute mean metric value for se-
lected models. This indicates that few or no favored subgroups were detected by
the clustering algorithm if the skew occurred towards discriminated subgroups
and vice versa. This behavior was often observed for the subspace clustering
algorithms, that again did not perform differently than the conventional algo-
rithms. Only for SSC-BP, we observed a duplication rate of 0.4 whereas the other
algorithms had maximally one collision on the entropy-induced subgroups.

6 Conclusion & Future Work

In our research we have proposed two techniques to identify subgroups in data
to perform a subgroup fairness analysis on. The experimental results proved
the ability of our clustering- and entropy-based approach to detect subgroups in
datasets on which a given classifier violates common fairness criteria, namely sta-
tistical parity, equal opportunity and equalized odds. We found a strong overall
performance when employing the SLINK clustering algorithm in our subgroup
detection methods as it identifies subgroups with a high deviation from what
would be considered fair. Future research could investigate on relationships be-
tween classification models and the subgroup detection performance or extend
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the proposed subgroup detection. We currently work on the integration of our
method into a graphical, web-based tool allowing users to perform an auto-
matic subgroup fairness analysis on their dataset and classifier in a user-friendly
manner. With the help of the fairness analysis tool, we want to provide deeper
insights into the composition of the detected subgroups straightforward to users.
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