
Applications of Ordinal Ranks to
Flexible Query Answering?

Lucie Urbanova1, Vilem Vychodil1, and Lena Wiese2

1 DAMOL (Data Analysis and Modeling Laboratory)
Dept. Computer Science, Palacky University, Olomouc
17. listopadu 12, CZ77146 Olomouc, Czech Republic
lucie.urbanova01@upol.cz, vychodil@acm.org

2 Institute of Computer Science, University of Hildesheim
Samelsonplatz 1, 31141 Hildesheim, Germany

lena.wiese@uni-hildesheim.de

Abstract. Exact querying and retrieving relevant data from a database
is a difficult task. We present an approach for flexibly answering algebraic
queries using an extension of Codd’s relational model with ordinal ranks
based on residuated lattices and similarities on attribute domains.

Keywords: Flexible query answering, ranked data tables, complete resid-
uated lattices, similarity, relational algebra

1 Introduction

As nowadays massive amounts of data are stored in database systems, it becomes
more and more difficult for a database user to exactly retrieve data that are
relevant to him: it is not easy to formulate a database query such that:

1. on the one hand, the user retrieves all the answers that interest him; that is,
false negatives and empty answers are avoided by also giving the user data
that are closely related to his original query,

2. on the other hand, the user does not retrieve too much irrelevant data (that
is, false positives in the form of “overabundant” and “unsatisfactory an-
swers”) – hence avoiding data not related to the user’s original intention.

In this article, we assume the following setting: A user sends a query (ex-
pressed in relational algebra) to a relational database – that is, a set of data
tables, where again each data table consists of a set of attributes and each at-
tribute has been assigned a fixed domain of values (like strings or integers).
However, based on the previous work in [3], we extend the relational database
by ranks: each tuple in a data table has a rank value to denote how much a tuple
matches the user’s query. Ranks come from an ordinal scale bounded by 0 (no

? Supported by grant no. P103/11/1456 of the Czech Science Foundation and internal
grant of Palacky University no. PrF_2012_029. DAMOL is supported by project reg.
no. CZ.1.07/2.3.00/20.0059 of the European Social Fund in the Czech Republic.

match) and 1 (full match) and we allow to have imperfect matches represented
by intermediate ranks. These ordinal ranks have a comparative meaning: the
higher the rank, the better it matches the user’s query. Before the user starts
querying the database, all ranks for tuples explicitly contained in the data tables
are assumed to be 1, whereas implicitly all other tuples (not occurring in the
data tuples but consisting of valid combinations of domain values) are ranked 0.
By using ordinal ranks, query answering becomes more flexible in the following
sense: The user will not only retrieve answer tuples with rank 1 (which might
not even exist); instead the user will also retrieve answer tuples with ranks lower
than 1 which still may contain relevant information for him. To obtain the ranks,
we will employ a notion of similarity on each attribute domain: for any two val-
ues from a domain we assume a predefined value that denotes how similar the
two domain values are. In particular, we show how to apply the notion of ranked
data tables (RDTs) and complete residuated lattices

– to rank answer tuples according to their relevance for the user,
– to let a user specify preferences on equality conditions in his queries,
– and to suppress irrelevant answers by a global threshold.

2 Background on Ranked Data Tables

The flexible query answering approach we discuss in this paper is based on a
similarity-based generalization of Codd’s relational model of data [10]. As in the
traditional Codd’s model, we assume a set Y of attributes where each attribute
y ∈ Y has a specific fixed domain denoted Dy. A relation scheme consists of a
finite subset of the attributes R ⊆ Y . Each data table (or relation instance) for a
relation scheme R is a finite set of tuples where a tuple is a map r : R→

⋃
y∈RDy

such that the value of the tuple for an attribute complies with the domain of the
attribute, that is: r(y) ∈ Dy. The set of all tuples r : R→

⋃
y∈RDy will also be

denoted by Tupl(R).
An important aspect of Codd’s model is that data tables (relations) repre-

sent both the stored data and results of queries. In fact, in theory there is no
distinction between the two roles as stored data can be seen as results of queries
(show all stored data) and results of queries can again be stored. In both the
cases, a data table D is a finite subset of Tupl(R), i.e., we may think of the tuples
in D as tuples assigned a rank 1 indicating a match. Analogously, the tuples not
present in D can be seen as tuples assigned a rank 0 indicating no match. Clearly,
there is a one-to-one correspondence between data tables D ⊆ Tupl(R) and such
assignments where at most finitely many tuples from Tupl(R) are assigned rank
1. It is natural to interpret the ranks 0 and 1 as truth degrees which come from
a two-element Boolean algebra with the usual interpretation (0 for falsity and
1 for truth) and ordering 0 < 1. From this point of view, we argue that ordinal
ranks which we use here in a more general setting are already present in the
original Codd’s model, only they do not appear explicitly. The primary role of
ranks stems directly from the model – they indicate whether a tuple matches or

does not match a given query (formulated in a particular query language, e.g. a
relational algebra, and evaluated in a database instance).

Example 1. As a running example we assume a database of book stores and their
stock. That is, we have a table of bookstores storing the name of a bookstore,
the ZIP of the warehouse where the book is on stock, and the ISBN and price of
each book sold in each store; and we have a table of books storing ISBN, title,
and level of presentation. Hence a database instance may look as follows.

Stores rank name zip isbn price

1.0 Bookworm 38457 037-4-592-24599-7 59.95

1.0 Bookworm 38457 834-3-945-25365-9 19.95

1.0 Bookmarket 32784 834-3-945-25365-9 23.95

1.0 BooksBooks 98765 945-7-392-66845-4 89.95

Books rank bookid title level

1.0 037-4-592-24599-7 SQL beginner

1.0 834-3-945-25365-9 Databases advanced

1.0 945-7-392-66845-4 DB systems professional

In this paper, to allow for flexible query answering, we utilize an extension
of Codd’s model which allows us to consider general ranks, not only 0 (false or
no match) and 1 (true or match), coming from a general partially ordered set
which is bounded by 0 and 1. Technically, the extension we use here results from
Codd’s model if we replace the two-valued Boolean algebra which serves as the
structure of truth degrees by a more general structure. Hence, the approach we
use in this paper builds upon Codd’s model which is developed using a weaker
metamathematics. There are several important practical consequences:

Clarity: The model stays purely relational. There is no “ad hoc” ranking module
attached on top of the classic model. The classic model results from the model
used here by a particular choice of the structure of ranks. Namely, if the
structure is bivalent (the two-valued Boolean algebra), our model becomes
the ordinary model with yes/no matches.

Ranked data tables are used instead of the classic data tables as the basic struc-
tures and represent both the results of queries and stored data. Each ranked
data table D (an RDT) is a map assigning to each tuple r ∈ Tupl(R) a
rank denoted D(r). The rank is interpreted as a degree to which r matches
a query. The ranks have ordinal interpretation, D(r1) > D(r2) means that
r1 is a better match than r2, D(r) = 1 means that r matches fully (a given
query), D(s) = 0 means that s does not match the query at all.

Support for imperfect matches: As in Codd’s model, queries are represented by
expressions which are evaluated in database instances (there are several
equivalent query systems like relational algebra and domain relational cal-
culus with range declarations). The fact that a general structure of ranks
is used influences the rules how the queries are evaluated – there is a need
to aggregate values of ranks that can be other than 0 and 1 and thus the
operations of Boolean algebra can no longer do the job. In order to evalu-
ate general queries, the structure of ranks shall be equipped by additional

operations for aggregation of ranks. Nevertheless, the evaluation stays truth
functional as in Codd’s model. As a consequence, the results of queries are
given only by the database instance and the structure of ranks.

Equalities replaced by similarities: Equalities on domains are an integral part of
Codd’s model and appear in restrictions (selections), natural joins, the se-
mantics of functional dependencies, etc. In our model, equalities on domains
(tacitly used in Codd’s model) become explicit similarity relations, assigning
to each two elements from a domain Dy of attribute y a degree to which they
are similar. Similarity degrees come from the same scale as ranks and have
the same ordinal interpretation: higher degrees mean higher similarity and
thus higher preference if one is asked to choose between alternatives.

Other important aspects: The model is general and not limited just to data
querying. There are results on various types of similarity-based dependencies
in data [2] that can be exploited in the process of flexible query answering.

We now outline a fragment of the model which is sufficient to discuss flexible
query answering with ordinal ranks. We use the unit interval on the reals L =
[0, 1] in all our examples which will both constitute the ranks of tuples in a data
table as well as similarity degrees between any two values from a domain. In
general, the scale can be an arbitrary set L bounded by 0 and 1. In order to
be able to compare ranks and similarities, we equip L with a partial order ≤ so
that 〈L,≤〉 is a complete lattice. That means, for each subset of L there exists
a supremum and an infimum with respect to ≤ and 〈L,≤〉 can be alternatively
denoted by 〈L,∧,∨, 0, 1〉 where ∧ and ∨ denote the operations of infimum and
supremum, respectively. In case of the real unit interval L = [0, 1] and its natural
ordering, the suprema and infima of finite nonempty subsets of [0, 1] coincide
with their maxima and minima. Moreover, we accompany the complete lattice
with two binary operations that operate on any two elements of L, result in an
element of L and play roles of truth functions of logical connectives “conjunction”
and “implication” which are used in the process of evaluating queries as we
shall see later. These operations are a multiplication ⊗ and a residuum →. We
postulate that 〈L,⊗, 1〉 is a commutative monoid and ⊗ and→ satisfy a so-called
adjointness property: a ⊗ b ≤ c iff a ≤ b → c (for all a, b, c ∈ L). Altogether,
L = 〈L,∧,∨,⊗,→, 0, 1〉 is called a complete residuated lattice.

Remark 1. The conditions for ⊗ and → were derived by Goguen [13] from a
graded counterpart of modus ponens and were later employed in various multiple-
valued logics with truth-functional semantics, most notably in BL [16], MTL [11]
and their schematic extensions. Nowadays, adjointness is considered as a prop-
erty which ensures that ⊗ and→ are truth functions for multiple-valued conjunc-
tion and implication with reasonable properties. The properties are weaker than
the properties of two-valued conjunction and implication but sufficient enough to
have syntactico-semantically complete logics, see [16] and [9] for an overview of
recent results. A particular case of a complete residuated lattice is a two-valued
Boolean algebra if L = [0, 1], ∧ = ⊗ is the truth function of ordinary conjunction,
∨ and → are truth functions of disjunction and implication, respectively.

Examples of complete residuated lattices include finite as well as infinite
structures. For the real unit interval L = [0, 1] and its natural ordering, all
complete residuated lattices are given by a left-continuous t-norm ⊗, see [1, 16].
Moreover, all complete residuated lattices with continuous ⊗ can be constructed
by means of ordinal sums [8] from the following three pairs of adjoint operations:

 Lukasiewicz a⊗ b = max(a+ b− 1, 0) a→ b = min(1− a+ b, 1)

Gödel a⊗ b = min(a, b) a→ b = b if a > b; 1 otherwise

Goguen a⊗ b = a · b a→ b = b
a if a > b; 1 otherwise

Recall that an L-set (a fuzzy set) A in universe U is a map A : U → L, A(u)
being interpreted as “the degree to which u belongs to A”. A binary L-relation
(a binary fuzzy relation) B on U is a map B : U ×U → L, B(u1, u2) interpreted
as “the degree to which u1 and u2 are related according to B”. See [1] for details.

Definition 1 (ranked data table). Let R ⊆ Y be a relation scheme. A ranked
data table on R (shortly, a RDT) is any map D : Tupl(R) → L such that there
are at most finitely many tuples r ∈ Tupl(R) such that D(r) > 0. The degree
D(r) assigned to tuple r by D shall be called a rank of tuple r in D.

Remark 2. The number of tuples which are assigned nonzero ranks in D is de-
noted by |D|, i.e. |D| is the cardinality of {r | D(r) > 0}. We call D non-ranked if
D(r) ∈ {0, 1} for all tuples r. The non-ranked RDTs can be seen as initial data,
i.e., relations in the usual sense representing stored data as in the classic model.

In this paper, we consider queries formulated using combinations of relational
operations on RDTs. The operations extend the classic operations by considering
general ranks. For our purposes, it suffices to introduce the following operations:

Intersection: An intersection (a ⊗-intersection) of RDTs D1 and D2 on relation
scheme T is defined componentwise using ⊗: (D1 ⊗ D2)(t) = D1(t) ⊗ D2(t)
for all tuples t. If D1 and D2 are answers to queries Q1 and Q2, respectively,
then D1 ⊗D2 is an answer to the conjunctive query “Q1 and Q2”.

Projection: If D is an RDT on relation scheme T , the projection πR(D) of D onto
R ⊆ T is defined by (πR(D))(r) =

∨
s∈Tupl(T\R)D(rs) for each r ∈ Tupl(R).

Note that rs denotes a usual concatenation of tuples r and s which is a set-
theoretic union of r and s. Projection has the same meaning as in the Codd’s
model and the supremum

∨
aggregating the ranks D(rs) is used because of

the existential interpretation of the projection.
Cross join (Cartesian product): For RDTsD1 andD2 on disjoint relation schemes

S and T we define an RDTD1 ./ D2 on S∪T , called a cross join of D1 and D2

(or, a Cartesian product of D1 and D2), by (D1 ./ D2)(st) = D1(s)⊗D2(t).
The cross join D1 ./ D2 contains tuples which consist of concatenations of
tuples from D1 and D2. Note that in our model, we can have |D1 ./ D2| <
|D1| · |D2| (e.g., if ⊗ is the Lukasiewicz conjunction).

Renaming attributes: The same operation as in the Codd’s model [19].

If we apply these operations on non-ranked RDTs, we always obtain a non-
ranked RDT. RDTs with ranks other than 0 and 1 result from non-ranked RDTs
by using similarity-based restrictions (selections): Given a nonranked RDT D
and a formula like y ≈ d saying “(the value of the attribute) y is similar to d”,
we select from D only the tuples which match this similarity-based condition.
Naturally, the condition shall be matched to degrees: each tuple from D is as-
signed a rank representing the degree to which the tuples matches the condition.

In order to formalize similarity-based restrictions, we equip each domain
Dy with a binary L-relation ≈y on Dy which satisfies the following conditions:
(i) for each u ∈ Dy: u ≈y u = 1 (reflexivity), and (ii) for each u, v ∈ Dy:
u ≈y v = v ≈y u (symmetry). Such a relation shall be called a similarity. Taking
into account similarities on domains, we introduce the following operation:

Restriction (selection): Let D be an RDT on T and let y ∈ T and d ∈ Dy. A
similarity-based restriction σy≈d(D) of tuples in D matching y ≈ d is defined
by
(
σy≈d(D)

)
(t) = D(t) ⊗ t(y)≈y d. Considering D as a result of query Q,

the rank of t in σy≈d(D) is interpreted as a degree to which “t matches the
query Q and the y-value of t is similar to d”. We can consider more general
restrictions σϕ(D), where ϕ is a more complex formula than y ≈ d.

Using cross joins and similarity-based restrictions, we can introduce similarity-
based equijoins such as D1 ./p≈q D2 = σp≈q(D1 ./ D2). Various other types of
similarity-based joins can be introduced in our model. Details can be found in [3].

3 Similarity-Based Ranking of Database Answers

If a user specifies equality conditions in his query to select tuples from the
database, these equality conditions may be too strict to give the user a satisfac-
tory answer. The simplest setting to retrieve more relevant answers for the user
is to replace equality = in each condition with similarity ≈ and then use the
similarity-based algebraic operators to obtain ranks for the answer tuples. The
ranks will be based on the predetermined similarities between domain values.
For simplicity, we concentrate in this paper on selection-projection-join (SPJ)
queries. Other operators like division, union and intersection can be incorpo-
rated like in [3]. We may also introduce in our model a topk operation in much
the same sense as, e.g., in RankSQL [18] but in a truth-functional way. We do
not discuss these issues here because of the limited scope of this paper.

Example 2. For example, we can ask for titles and prices of books sold by a
bookstore with ZIP code 35455 by doing an equi-join over the ISBN:

πtitle,price[σzip=35455(Books ./bookid=isbn Stores)]

Or ask for the name of a bookstore that sells “professional books” entitled
“Databases”:

πname[σlevel=professional,title=Databases(Books ./bookid=isbn Stores)]

In general, we consider SPJ queries of the form:

πA[σC(ρR(D1) ./E1 · · · ./Em ρR(Dn))] where

– Di is a ranked data table

– C is a conjunction of selection conditions consisting of

• equalities y = d (where y is an attribute in the relation scheme and d is
a constant from its domain Dy)

• equalities y1 = y2 (where y1 and y2 are attributes in the relation scheme
with a common domain Di)

– Ej is a set of join conditions as equalities between attributes y1 = y2 (where
y1 and y2 are attributes in the relation scheme of some Di)

– R is a list of renaming conditions y′ ← y giving attribute y a new name y′

(where y is an attribute in the relation scheme of the appropriate Di but y′

does not occur in any relation scheme)

– A is the set of projection attributes (after renaming according to R)

Example 3. For the example SPJ queries there are no tuples in the example
tables that satisfy the equality conditions. Now assume that similarity is de-
fined on attribute zip as (35455≈38457)=0.9 as well (35455≈32784)=0.8 and
(35455≈98765)=0.2; whereas for bookid and isbn we assume that similarity is
defined by strict equality, that is it is 1 only for exactly the same ISBN and 0
otherwise: (d ≈ d) = 1, but (d ≈ d′) = 0 for d 6= d′. To obtain a ranked data
table as a flexible answer for the first query, we replace equality with similarity:

πtitle,price[σzip≈35455(Books ./bookid≈isbn Stores)]

results in the following ranked answer table:

rank title price

0.9(= 0.9⊗ 1) SQL 59.95

0.9(= 0.9⊗ 1) Databases 19.95

0.8(= 0.8⊗ 1) Databases 23.95

0.2(= 0.2⊗ 1) DB systems 89.95

By furthermore assuming similarity on the attributes level and zip we can
also relax the second query. For example, let (professional≈advanced)=0.6
and (professional≈beginner)=0.1, as well as (Databases≈DB systems)=0.9
and (Databases≈SQL)=0.7. Then the query

πname[σlevel≈professional,title≈Databases(Books ./bookid≈isbn Stores)]

returns the table

rank name

0.9(= 1⊗ 0.9⊗ 1) BooksBooks

0.6(= 0.1⊗ 0.7⊗ 1 ∨ 0.6⊗ 1⊗ 1) Bookworm

0.6(= 0.6⊗ 1⊗ 1) Bookmarket

4 Emphasizing some Equality Conditions

Extending this simple setting, a user might want to express importance of some
equality conditions in his queries. For one, he might want to express that he
requires equality (that is full similarity to degree 1) in a selection condition.
More generally, a user must be able to express that some conditions are more
important for him – and hence to require a higher degree of satisfaction for these
conditions; whereas for other conditions he is more willing to relax the equality
requirement – and he will be content with a lower degree of satisfaction for these
conditions. In our model, this kind of emphasis mechanism can be implemented
using so-called residuated shifts as follows. Similarity-based restrictions σy≈d(D)
that appear in our queries can be generalized so that we consider a more general
formula of the form a⇒ y ≈ d instead of y ≈ d. In this setting, we introduce a
similarity-based restriction σa⇒y≈d(D) of tuples in D matching y ≈ d at least to
degree a ∈ L defined with the help of the residuum operator (→) by(

σa⇒y≈d(D)
)
(t) = D(t)⊗

(
a→ t(y)≈y d

)
. (1)

Using adjointness, we get that 1 → a = a for all a ∈ L. Hence, σ1⇒y≈d(D) =
σy≈d(D). On the other hand, 0→ a = 1 for all a ∈ L, meaning σ0⇒y≈d(D) = D.
Due to the monotony of ⊗ and antitony of → in the first argument, we get(

σb⇒y≈d(D)
)
(t) ≤

(
σa⇒y≈d(D)

)
(t)

whenever a ≤ b. By a slight abuse of notation, the latter fact can be written as
σb⇒y≈d(D) ⊆ σa⇒y≈d(D). Therefore, a ∈ L in σa⇒y≈d(D) acts as a threshold
degree, the lower the degree, the lower the emphasis on the condition y ≈ d and,
in consequence, the larger the answer set. In the borderline cases, σ0⇒y≈d(D)
means no emphasis on the condition, σ1⇒y≈d(D) means full emphasis, i.e., the
original similarity-based selection.

Remark 3. Let us comment on the role of degrees as thresholds. Using ad-
jointness, for all a, b ∈ L, we have a ≤ b iff a → b = 1. Applied to (1),
a → t(y)≈y d = 1 iff the y-value of t is similar to d at least to degree a.
Therefore, if D is a result of query Q, then the rank σa⇒y≈d(D)(t) shall be in-
terpreted as a degree to which “t matches Q and the y-value of t is similar to
d at least to degree a”. This justifies the interpretation of a ∈ L as a threshold
degree. The benefit of using a → t(y)≈y d in (1) which is in fuzzy relational
systems [1] called a residuated shift, is that the threshold is exceeded gradually
and not just “exceeded in terms yes/no”. For instance, if a > t(y)≈y d and the
similarity degree t(y)≈y d is sufficiently close to a, the result of a→ t(y)≈y d is
not 1 but it shall be sufficiently close to 1, expressing the fact that the threshold
has almost been exceeded, i.e., that the y-value of t is similar to d almost to
degree a. This is illustrated by the following example.

Example 4. Assume we want to express that a similarity on the ZIP code of
above 0.8 is perfectly fine for us, then the first query looks like this

πtitle,price[σ0.8⇒(zip≈35455)(Books ./bookid≈isbn Stores)]

and results in the following ranked answer table by evaluating 0.8→ 0.9 to 1.0,
0.8→ 0.8 to 1.0, and 0.8→ 0.2 to 0.2 in the Gödel algebra (this value would be
0.4 in Lukasiewicz and 0.25 in Goguen algebra):

rank title price

1.0(= (0.8→ 0.9)⊗ 1) SQL 59.95

1.0(= (0.8→ 0.9)⊗ 1) Databases 19.95

1.0(= (0.8→ 0.8)⊗ 1) Databases 23.95

0.2(= (0.8→ 0.2)⊗ 1) DB systems 89.95

In the second query, if we insist on books with professional level, but we are
indeed interested in books with related titles up to a similarity of 0.5:

πname[σ1⇒(level≈professional),0.5⇒(title≈Databases)(Books ./bookid≈isbn Stores)]

then we get the answer table

rank name

1.0(= (1→ 1)⊗ (0.5→ 0.9)⊗ 1) BooksBooks

0.6(= (1→ 0.1)⊗ (0.5→ 0.7)⊗ 1 ∨ (1→ 0.6)⊗ (0.5→ 1)⊗ 1) Bookworm

0.6(= (1→ 0.6)⊗ (0.5→ 1)⊗ 1) Bookmarket

5 Global Relevance Threshold for Subqueries

The results of queries in our model are influenced by the underlying structure
of truth degrees L because the operations of L are used to aggregate ranks.
Hence, different choices of L in general lead to different answer sets. By a careful
choice of the structure of truth degrees, we can allow users to influence the size
of the answer set so that the user can tune the structure to obtain an answer
set of the most desirable size. In this section, we consider a situation where we
want to emphasize answer tuples that satisfy at least some subqueries (similarity
conditions) with a high degree. Opposed to this, answer tuples that satisfy all
subqueries (similarity conditions) with lower degrees than desirable should be
ranked considerably lower. The user might then specify a global threshold (as
opposed to the local thresholds in Section 4) to denote that values above the
threshold are relevant to him whereas values below the threshold are irrelevant.
Interestingly, this idea can be implemented in our model by a choice of the
structure L without altering the relational operations.

Remark 4. Note that the Goguen ⊗ (usual multiplication of real numbers) has
the property that a⊗ b > 0 for all a, b > 0 (⊗ is called strict), see Fig. 1 (right).
The Lukasiewicz ⊗ does not have this property: for each 0 < a < 1 there is
b > 0 such that a ⊗ b = 0 (⊗ is called nilponent), see Fig. 1 (left). Thus, if
one uses the Goguen operations on [0, 1], each query considered in this paper
has a nonempty answer set provided that all similarities have the property that
d1 ≈y d2 > 0 which can be technically ensured. In practice, the benefit of always
having a nonempty answer set this way is foiled by having (typically) a large
number of answers with very low ranks which match the initial query only to a

9

0

1

1 0

1

1 0

1

1

Fig. 1. XXX

Fig. 1. Contour diagrams: Lukasiewicz ⊗ (left), ⊗0.5 (middle), Goguen ⊗ (right).

very low degree and are (typically) not interesting for a user. On the contrary,
using the Lukasiewicz operations instead of the Goguen ones, one can have a
situation where there are subqueries satisfied to high degrees, say a1, . . . , ak but
a1⊗· · ·⊗ak = 0, i.e., the answer tuples will be lost since their rank will be zero.

Considering the behavior of the Goguen and Lukasiewicz operations men-
tioned in Remark 4 and our motivation to separate answers with sufficiently
high degrees from the rest, we may consider complete residuated lattices L de-
fined on the real unit interval that act as the Goguen structure on a subinterval
(α, 1] and as the Lukasiewicz structure on the subinterval [0, α). The degree
α ∈ [0, 1] is then a threshold that can be set by a user saying that “if ranks of
answer tuples exceed the threshold α ∈ L, they shall not vanish from the answer
set”. The combination of Goguen and Lukasiewicz structure we need for this
particular purpose can be described as a result of algebraic operation called an
ordinal sum [8]. For α ∈ [0, 1], we let

a⊗α b =


α+

(a− α)(b− α)

1− α
, if a, b ∈ (α, 1),

max(0, a+ b− α), if a, b ∈ (0, α),

min(a, b), otherwise,

a→α b =



1, if a ≤ b,

α+
(1− α)(b− α)

a− α
, if 1 > a > b > α,

α− a+ b, if α > a > b,

b, otherwise,

for all a, b ∈ [0, 1]. Then, Lα = 〈L,∧,∨,⊗α,→α, 0, 1〉 is a complete residu-
ated lattice (an ordinal sum of an isomorphic copy of a Lukasiewicz structure
and Goguen structure with the idempotent α ∈ L, see [1, 8, 16] for details.
Fig. 1 (middle) shows ⊗0.5, i.e., the multiplication of L0.5 which behaves as the
 Lukasiewicz conjunction on [0, 0.5) and the Goguen conjunction on (0.5, 1].

Remark 5. Taking Lα for the structure of degrees has the advantage that the
threshold α ∈ L is not acting as a clear “cut” where answer tuples with a degree

below the threshold are completely disregarded; instead, it leads to a stepwise
degradation (but potentially with a degree still above 0) depending on how many
subqueries are satisfied by the answer tuple only to a degree below the threshold:
the more subqueries are below the threshold the closer the overall degree will be
to 0. In effect, with this threshold we can flexibly increase or decrease the size
(that is, number of tuples) in the result as it is shown by the following assertions.

The following theorem states that you get more results with a lower threshold and
that results above a certain threshold will be ranked lower by a lower threshold.

Theorem 1. Let DQLα be a result of an SPJ query Q when Lα is used as the

structure of truth degrees. If α < β, then |DQLβ | ≤ |D
Q
Lα
|. If α < β and a tuple t

satisfies all subqueries of Q to a degree greater than β, then
(
DQLα

)
(t) <

(
DQLβ

)
(t).

Proof (a sketch). The claim follows from fact that a⊗α b = 0 implies a⊗β b = 0
whenever α ≤ β, i.e. α yields a greater (or equally sized) answer set than β. The
second claim is a consequence of a⊗α b < a⊗β b for a, b ∈ (β, 1). ut

Example 5. Consider the following query with four similarity conditions

σtitle≈SQL,level≈beginner,zip≈56571,price≈20.00(Books ./bookid≈isbn Stores)

In the table Books ./bookid≈isbn Stores we have the tuple 〈834-3-945-25365-9,
Databases, advanced, Bookworm, 32784, 834-3-945-25365-9, 19.95〉. With the
following given similarities (SQL≈Databases)=0.7, (beginner≈advanced)=0.4,
(56571≈32784)=0.1, and (20.00≈19.95)=0.9, we see that two similarity condi-
tions are satisfied at high degrees (0.7 and 0.9) while the other two are satisfied
at low degrees (0.4 and 0.1). Comparing the different ⊗ operators we get:

 Lukasiewicz Gödel Goguen ⊗0.5 ⊗0.4 ⊗0.3

0 0.1 0.0252 0 0.1 0.1
We see that for threshold α = 0.5 the tuple is not included in the answer table
(ranked 0); when decreasing the threshold to α = 0.4 it is included (ranked 0.1)
and stays in the answer for the lower threshold α = 0.3.

Another potential tuple is 〈945-7-392-66845-4, DB systems, professional,
BooksBooks, 98765, 945-7-392-66845-4, 89.95〉. With similarities (SQL≈DB
systems)=0.3, (beginner≈professional)=0.1, (56571≈98765)=0.1, as well as
(20.00≈89.95)=0.1, we see that all similarity conditions are satisfied at low de-
grees (0.3 and 0.1). Comparing the different ⊗ operators we get:

 Lukasiewicz Gödel Goguen ⊗0.5 ⊗0.4 ⊗0.3

0 0.1 0.0003 0 0 0
Hence, even for low thresholds the tuple does not occur in the answer table.

6 Related Work

The notion of answering queries in a flexible and user-oriented manner has been
investigated for a long time; see [12] for some recent examples and [21] for an
extensive study on fuzzy querying (and a query language called SQLf). Other

related work of Bosc et al considers extending the support of a fuzzy membership
function in order to weaken fuzzy conditions in a query [4] where a tolerance
relation can be used to flexibly model closeness in a domain. In [14], Hadjali and
Pivert analyze the use of fuzzy views and study the influence of different fuzzy
implication operators (like Gödel, Goguen and Lukasiewicz implication) on which
views in a distributed database system are chosen to answer a fuzzy query. Pivert
et al ([22]) handle the empty answer set (EAS) problem and the unsatisfactory
answer set (UAS) problem, where there are either no answers at all or only
answers with a low degree of satisfaction with respect to a user-defined threshold
α. They efficiently determine minimal failing subqueries (MFS) of conjunctive
queries defined by α-cuts; these MFS can give the user some explanation on why
his query failed (that is, the answer set was empty or unsatisfactory). Although
the notion of a threshold is common with our work, in [22] (sub-)queries below
the threshold are totally disregarded, whereas our relevance threshold leads to
more emphasis for answer tuples with some subqueries rated above the threshold
(as opposed to lower ranks for answer tuples with all subqueries rated below it).

Vaneková and Vojtáš [23] provide an implementation of another fuzzy-set-
based modeling of user preferences. They consider searching for data based on
several attributes. A user expresses his search preferences as a membership func-
tion on the attribute domains.

In sum, most of the related works discussed above relies on gradual predicates
or trapezoidal membership functions. In contrast, our approach relies on simi-
larity defined on attribute domains. We argue that it might be equally difficult
to define the membership degrees (see also the FITA/FATI problem discussed
in [15]) for the fuzzy-set-based approaches as it is difficult to define the similar-
ity values on attribute domains which our similarity-based approach relies on;
hence no preference should be given to one or the other approach: while there
are cases where user preferences can be easily modeled by fuzzy sets, in other
cases it might be more natural to use similarities on domains. The paper [5] also
provides a survey of related techniques (including similarity-based approaches)
and argues how they are included in the fuzzy-set-based system. The similarity-
based approaches surveyed there however do not take advantage of lattice-based
fuzzy logic but rely more or less on metric calculations of distances. In this pa-
per we showed how to put similarity-based flexible query answering on a sound
logical foundation.

Preference queries – extensively studied by Chomicki (et al) [6, 7, 20] – are a
further field of related work: a preference order ≺must be predefined on attribute
domains by a user; these attribute preference relations can then be combined
into a tuple preference relation and this tuple preference relation can be used
to return the most-preferred tuples upon a user query for example with the
algebraic “winnow” operator. In particular, a special case of preference relations
can be expressed by a scoring function f that is used to compare two constant
values. The work in [24] extends preferences to work between sets of tuples. The
advantage of preference orders is that they have some desirable properties (like
transitivity: if A is preferred to B and B is preferred to C then A is also preferred

to C). By iterating the winnow operator [6], a ranking of answer tuples (into
best, second-best, ...) can be obtained; this is similar to our approach where
the similarity degree of each answer tuple gives the user a fine-grained means
of deciding if the tuple is relevant to him. A formal comparison between the
properties of preference queries and the similarity-based approach we propose in
this paper might be an interesting topic of future work.

Moreover, the user can specify dependencies between data – in particular,
dependencies between different relations in the database. These dependencies
can be given by logical rules and can be applied to the query to retrieve other
answers that are relevant for the user under the background knowledge specified
by the set of rules. This operation is known as “Goal Replacement” (e.g., [17]); it
might be worthwhile to study its behavior in similarity-based query answering.

7 Conclusion

We applied similarities on attribute domains to rank tuples in answers to SPJ
queries on relational databases. These ranks allow for flexible query answering
as they have a comparative meaning and help users identify the answer tuples
that match their intention best. Ranks are computed by i) replacing equality
with similarities (Section 3), ii) emphasizing individual equality conditions with
the residuated shift (Section 4), and iii) setting a global threshold to alter the
size of the answer tables using ordinal sums of residuated lattices (Section 5).
Our model has a strong theoretical background in the theory of ranked data
tables where the classical bivalent structure is replaced by a structure with more
than two truth values (that is, a lattice of ranks). Several hints towards future
work have been given in Section 6. An efficient prototypical implementation of
query answering in ranked data tables is under development at the Data Analysis
and Modeling Laboratory of Palacky University; its performance will be closely
analyzed in the future.

References

1. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer
Academic Publishers, Norwell, MA, USA (2002)

2. Belohlavek, R., Vychodil, V.: Data tables with similarity relations: Functional de-
pendencies, complete rules and non-redundant bases. In: Database Systems for
Advanced Applications, Lecture Notes in Computer Science, vol. 3882, pp. 644–
658. Springer (2006)

3. Belohlavek, R., Vychodil, V.: Query systems in similarity-based databases: logical
foundations, expressive power, and completeness. In: ACM Symposium on Applied
Computing (SAC). pp. 1648–1655. ACM (2010)

4. Bosc, P., HadjAli, A., Pivert, O.: Incremental controlled relaxation of failing flexible
queries. Journal of Intelligent Information Systems (JIIS) 33(3), 261–283 (2009)

5. Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In: 9th ACM Sympo-
sium on Applied Computing (SAC). pp. 170–174 (1994)

6. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on
Database Systems 28(4), 427–466 (2003)

7. Chomicki, J.: Logical foundations of preference queries. IEEE Data Engineering
Bulletin 34(2), 3–10 (2011)

8. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of
continuous t-norms and their residua. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 4, 106–112 (2000)

9. Cintula, P., Hájek, P.: Triangular norm based predicate fuzzy logics. Fuzzy Sets
and Systems 161, 311–346 (2010)

10. Codd, E.F.: A relational model of data for large shared data banks. Communica-
tions of the ACM 26, 64–69 (1983)

11. Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-
continuous t-norms. Fuzzy Sets and Systems 124(3), 271–288 (2001)

12. Galindo, J. (ed.): Handbook of Research on Fuzzy Information Processing in
Databases. IGI Global (2008)

13. Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1979)
14. HadjAli, A., Pivert, O.: Towards fuzzy query answering using fuzzy views - a

graded-subsumption-based approach. In: 17th International Symposium on Foun-
dations of Intelligent Systems (ISMIS). Lecture Notes in Computer Science, vol.
4994, pp. 268–277 (2008)

15. HadjAli, A., Pivert, O.: A fuzzy-rule-based approach to the handling of inferred
fuzzy predicates in database queries. In: 9th International Conference on Flexible
Query Answering Systems (FQAS). Lecture Notes in Computer Science, vol. 7022,
pp. 448–459. Springer (2011)

16. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-
drecht, The Netherlands (1998)

17. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Flexible Query Answering Systems (FQAS). Lecture Notes in Computer Science,
vol. 7022, pp. 1–12. Springer (2011)

18. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and opti-
mization for relational top-k queries. In: Proc. 2005 ACM SIGMOD. pp. 131–142
(2005)

19. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
20. Mindolin, D., Chomicki, J.: Contracting preference relations for database applica-

tions. Artificial Intelligence 175(7–8), 1092–1121 (2011)
21. Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial

College Press (2012)
22. Pivert, O., Smits, G., HadjAli, A., Jaudoin, H.: Efficient detection of minimal

failing subqueries in a fuzzy querying context. In: 15th International Conference
on Advances in Databases and Information Systems (ADBIS). Lecture Notes in
Computer Science, vol. 6909, pp. 243–256. Springer (2011)

23. Vaneková, V., Vojtáš, P.: Fuzziness as a model of user preference in semantic
web search. In: European Society of Fuzzy Logic and Technology Conference
(EUSFLAT). pp. 998–1003 (2009)

24. Zhang, X., Chomicki, J.: Preference queries over sets. In: 27th International Confer-
ence on Data Engineering (ICDE). pp. 1019–1030. IEEE Computer Society (2011)

