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Abstract. Massive amounts of newly generated gene expression data
have been used to further enhance personalised health predictions. Ma-
chine learning algorithms prepare techniques to explore a group of genes
with similar profiles. Biclustering algorithms were proposed to resolve
key issues of traditional clustering techniques and are well-adapted to
the nature of biological processes. Besides, the concept of genome data
access should be socially acceptable for patients since they can then be
assured that their data analysis will not be harmful to their privacy and
ultimately achieve good outcomes for society [1]. Homomorphic encryp-
tion has shown considerable potential in securing complicated machine
learning tasks. In this paper, we prove that homomorphic encryption
operations can be applied directly on biclustering algorithm (Cheng and
Church algorithm) to process gene expression data while keeping private
data encrypted. This Secure Cheng and Church algorithm (SeCCA) in-
cludes nine steps, each providing encryption for a specific section of the
algorithm. Because of the current limitations of homomorphic encryp-
tion operations in real applications, only four steps of SeCCA are imple-
mented and tested with adjustable parameters on a real-world data set
(yeast cell cycle) and synthetic data collection. As a proof of concept,
we compare the result of biclusters from the original Cheng and Church
algorithm with SeCCA to clarify the applicability of homomorphic en-
cryption operations in biclustering algorithms. As the first study in this
domain, our study demonstrates the feasibility of homomorphic encryp-
tion operations in gene expression analysis to achieve privacy-preserving
biclustering algorithms.

Keywords: Gene Expression, Biclustering Algorithm, Privacy-Preserving
AI, Homomorphic Encryption
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1 Introduction

Gene expression data are being generated through high-throughput technolo-
gies such as Microarray and RNA-seq. Biclustering algorithms – for instance,
Cheng and Church [2] – have been used extensively in this regard for discover-
ing meaningful groups and a link between sets of genes and sample traits [3].
Notwithstanding the importance of this analysis aspect, the rise in availability
and use of genomic data raises a growing concern about its security and privacy
[4]. Homomorphic encryption with certain operations (additions and/or multi-
plications) is able to handle sensitive genomic data by allowing data to remain
encrypted even during computation. Accordingly, researchers have used the po-
tential of homomorphic encryption operations in machine learning applications
– particularly medical data analysis. To the best of our knowledge, existing re-
cent studies have not addressed biclustering algorithms exclusively; this research
gap leads to a lack of secure data processing in this area. We intend to realise
the possibility of applying homomorphic encryption operations over bicluster-
ing algorithms, with our experimental results reported here showing promising
results. Our Secure Cheng and Church algorithm (SeCCA) consists of nine dif-
ferent steps, each of which ensures partial security of the algorithm. In practice,
due to the limitations of homomorphic operations discussed below, we bench-
marked four of them successfully: we tested the computational performance of
these four SeCCA steps and compared the result of them with the original al-
gorithm without any encryption/decryption. The distinct contribution of this
manuscript is to provide privacy-preserving steps for a biclustering algorithm,
specifically Cheng and Church algorithm (SeCCA), as for the first time Cheng
and Church introduced biclustering as a new paradigm to simultaneously cluster
both genes and conditions. Since then, many other such algorithms have been
published but mostly compare their works with this algorithm which has been a
foundation and proof-of-concept implementation of biclustering. In this paper,
we focus on the secure computation of the mean squared residue score that re-
stricts access to sensitive private data by homomorphic encryption operations.
Afterwards, we compare the biclusters obtained by non-encrypted with the ones
obtained by the encrypted Cheng and Church algorithm by means of external
evaluation measure (clustering error). All code and data sets are publicly avail-
able at https://github.com/ShokofehVS/SeCCA.

2 Related Work

Before approaching the core of our privacy-preserving procedure, we elaborate on
concepts of biclustering algorithms. Further in this section, we mention relevant
research on private genome data analysis applying cryptographic techniques.

2.1 Biclustering Algorithms

Traditional clustering algorithms are one-way clustering methods grouping ob-
servations according to similarities among all variables at the same time [5]. In

https://github.com/ShokofehVS/SeCCA
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addition, some studies elaborate that a biological process may be active only un-
der subsets of genes as well as subsets of samples. There are also some genes or
samples that may not participate in any cluster; hence it is of paramount impor-
tance to go beyond a traditional clustering prototype and apply a more adapted
technique like the biclustering [6] which simultaneously clusters the rows and
columns of a matrix for sorting heterogeneous data into homogeneous blocks [7].

2.2 Private Genomic Data Analysis

Numerous privacy-preserving clustering methods based on homomorphic encryp-
tion have been proposed; in the following, we survey some of these. The authors
in [8] implemented a privacy-preserving evaluation algorithm for support vec-
tor clustering. By this model, the cluster label was allocated for new test data
without decryption, which improved the clustering performance for non-convex
data. A deep neural network with fully homomorphic encryption introduced in
[9] adopted approximation methods and used bootstrapping to evaluate an ar-
bitrary deep learning model on encrypted data. A secure K-means (CKKSKM)
was developed in [10] to encrypt outsourcing data based on the CKKS scheme
to prevent revealing private information. This scheme reduced the overhead of
outsourcing data to the cloud for storage and calculation. In some experiments,
clustering algorithms are represented with focus on multiple encryption tech-
niques including homomorphic encryption and multiparty computation. [19] in-
troduces the first practical and fully private density-based clustering scheme
based on secure two-party computation. A scalable privacy-preserving cluster-
ing algorithm in [20] is designed for multi-party clustering in a modular approach
which is five orders of magnitude faster than the current solutions. FHE-friendly
K-Means-Algorithm on encrypted data by [21] presents a natural encoding that
makes division by an encrypted value possible with some restrictions in terms
of performance in practice. As opposed to the above approaches, in our paper,
we present and analyse proof-of-concept implementations of biclustering (par-
ticularly Cheng and Church Algorithm) on homomorphically encrypted gene
expression data – a use case for which no prior approaches could be found.

3 Theoretical Background

3.1 Cheng and Church Biclustering Algorithm

Biclustering algorithms – like Cheng and Church [2] – have been used extensively
in gene expression analysis which results in a better understanding of diseases
like cancer [22]. The concept of bicluster refers to a subset of genes and a subset
of conditions with a high similarity score, which measures the coherence of the
genes and conditions in the bicluster. It also returns the list of biclusters for the
given data set. Important notations in the paper containing input parameters are
summarised in Table 1. In addition, “enc” label at the beginning of each symbol
like enc maxV alue indicates an encrypted expression which here is the encrypted
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maximum value of the data matrix. The residue of a cell in the bicluster (aij)
over the subsets of the rows (I) and the columns (J) is defined by:

aij − aiJ − aIj + aIJ

Where aiJ , aIj , and aIJ indicate the mean of the ith row, the mean of the jth
column and that of all elements in the bicluster respectively. More precisely,
a submatrix AIJ is determined by the pair (I, J) where the row means are
aiJ = 1

|J|
∑

j∈J ai,j ; and similarly, the column means are aIj = 1
|I|

∑
i∈I ai,j

along with the mean in the submatrix (I, J) as below:

aIJ =
1

|I||J |
∑

i∈I,j∈J

aij =
1

|I|
∑
i∈I

aiJ =
1

|J |
∑
j∈J

aIj

The mean squared residue score can be described as the variance of all elements
in the bicluster, the mean of row variance, and the mean of column variance:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)
2

The focus is on finding biclusters having low mean squared residue score and
particularly large, maximal ones with scores below a predefined threshold. If
H(I, J) ≤ δ for δ ≥ 0, a submatrix AIJ is referred to δ-bicluster. The algorithm
starts with a large matrix (one with all the data) and then proceeds by removing
the row or column to achieve the largest decrease in the score. Accordingly, the
computation of the score of all the submatrices is needed after removing any row
or column. First, a step for the simultaneous deletion of multiple rows/columns
is performed over the input data set; this is followed by a single row/column
deletion step (see Algorithms 2 and 3). In the next step, the result of applying
node deletion may not be maximal, so some rows and columns can be added
without increasing the mean squared residue score (see Algorithm 4). Add that,
in the original study, Cheng and Church attempted to find α (a threshold for
multiple node deletion) as large as possible and run the algorithm on 100 biclus-
ters in less than 10 minutes as well. Steps 3 and 4 (refer to Section 4.2) won’t be
applied when the number of conditions is less than 100 for the yeast data set;
therefore, only algorithm 1 is called by starting deleting conditions.

3.2 Homomorphic Encryption

Homomorphic Encryption (HE) was coined first by Rivest in 1978 with the
concept of “privacy homomorphism”. Homomorphic encryption is considered a
secure computation method on encrypted data (ciphertext) in which the result
of the computation is also ciphertext. By decrypting the result in ciphertext,
the decrypted result should be identical to the output of operations on non-
encrypted (plaintext) data [11]. We apply Pyfhel as a python wrapper for the
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Algorithm 1 Finding a Given Number of Biclusters

Require: A Matrix of real numbers with possible missing elements, δ ≥ 0 the maxi-
mum acceptable mean squared residue score, α ≥ 1 a parameter for multiple node
deletion and n the number of δ-biclusters to be found

Ensure: Replacing missing elements in A with random numbers, A′ a copy of matrix
A

1: Apply multiple node deletion algorithm on A′, δ, and α for rows (columns) greater
than or equal to 100 (the result matrix B)

2: Apply single node deletion algorithm on B, and δ (the result matrix C)
3: Apply node addition algorithm on A and C (the result bicluster D)
4: Report D, and replace the elements in A′ that are also in D with random numbers

Algorithm 2 Single Node Deletion

Require: A Matrix of real numbers, δ ≥ 0 the maximum acceptable mean squared
residue score

Ensure: AIJ = A where I and J are initialised to the gene and condition sets in the
data

1: Compute aiJ for all i ∈ I, aIj for all j ∈ J, aIJ and H(I, J). If H(I, J) ≤ δ return
AIJ

2: Find the row i ∈ I with the largest d(i) = 1
|J|

∑
j∈J(aij − aiJ − aIj + aIJ)

2

3: Find the column j ∈ J with the largest d(j) = 1
|I|

∑
i∈I(aij − aiJ − aIj + aIJ)

2

4: Remove the row or column having the larger d value by updating I or J

Algorithm 3 Multiple Node Deletion

Require: A Matrix of real numbers, δ ≥ 0 the maximum acceptable mean squared
residue score, α > 1 a threshold for multiple node deletion

Ensure: AIJ = A where I and J are initialised to the gene and condition sets in the
data

1: Compute aiJ for all i ∈ I, aIj for all j ∈ J, aIJ and H(I, J). If H(I, J) ≤ δ return
AIJ

2: Remove the rows i ∈ I with 1
|J|

∑
j∈J(aij − aiJ − aIj + aIJ)

2 > αH(I, J)

3: Recompute aIj , aIJ and H(I, J)
4: Remove the columns j ∈ J with 1

|I|
∑

i∈I(aij − aiJ − aIj + aIJ)
2 > αH(I, J)

5: If nothing has been removed in the iteration, switch to Algorithm 2

Algorithm 4 Node Addition

Require: A Matrix of real numbers, I and J signify a δ-bicluster
1: Compute aiJ for all i, aIj for all j, aIJ and H(I, J)
2: Add the columns j /∈ J with 1

|I|
∑

i∈I(aij − aiJ − aIj + aIJ)
2 ≤ H(I, J)

3: Recompute aiJ , aIJ and H(I, J)
4: Add the rows i /∈ I with 1

|J|
∑

j∈J(aij − aiJ − aIj + aIJ)
2 ≤ H(I, J)

5: For each row i still not in I, add its inverse if 1
|J|

∑
j∈J(−aij + aiJ − aIj + aIJ)

2 ≤
H(I, J)

6: If nothing is added in the iteration, return the final I and J as I ′ and J ′
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Table 1: Notation and Symbols

Symbols Description

aij Element of expression matrix
aiJ Mean of the ith row
aIj Mean of the jth column
aIJ Mean of all elements
H(I, J) Mean squared residue of submatrix I and J
δ ≥ 0 Maximum acceptable mean squared residue score
α ≥ 1 Parameter for multiple node deletion
n number of δ-biclusters to be found
enc aij Encrypted element of expression matrix

Microsoft SEAL library in our project because of its convenience to use and
higher-level API. We use BFV [13] as a highly efficient fully homomorphic en-
cryption scheme for applications working over larger amounts of data with the
following settings that are chosen based on a number of examinations and ac-
cording to the suggested setting parameters in creating context:

– The plaintext modulus p specifies the prime number applied on the polyno-
mial’s coefficients that determines how large encrypted values can get before
wrap-around; we set p = 1964769281.

– The polynomial modulus m specifies the degree of the irreducible polynomial
xm + 1 of the underlying polynomial ring R; this ring is defined in BFV to
be a cyclotomic ring R = Z[x]/(xm + 1), where m is a power of 2; we set
m = 8192.

– In addition, we set Pyfhel’s security level parameter to 192 bit.
– We set the encoding scheme to fractional; in addition, 64 bits for integer and

4096 bits for the decimal part are adjusted.
– For BFV scheme, q is determined utilising the largest value that achieves

192-bit security for the given polynomial degree (parameter sec) [12]. Con-
sequently, logq is 152 according to the setup and parameters.

4 Secured CCA (SeCCA)

In this section, firstly, we describe a possible message flow for secure processing
of the Cheng and Church algorithm consisting of two agents (data owner and
storage system). Afterwards, we clarify how a homomorphic encryption scheme
could be utilised to ensure the security of gene expression data analysis by bi-
clustering algorithms (particularly the Cheng and Church algorithm).

4.1 Workflow

In our threat model, the gene expression data are privately kept by the data
owner. We assume the server to be semi-honest (“honest but curious” [14]);
hence, by processing encrypted data we aim to ensure that any data cannot
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be leaked on the server side. In addition, the biclustering algorithm that we
have used (Cheng and Church’s) is public and we trust the cloud server to do
computations correctly. It is worth mentioning the message flow which is inspired
by [15] consisting of two agents such as the data owner (patient) and storage
system (cloud) for secure processing in our scenario (Figure 1).

Data Owner (Patient) Data Storage (cloud)

Encrypt ag,p

Enc(ag,p)

enc ag,p Store encrypted data

enc ag,p

Request biclustering

enc Biclusters(enc ag,p)

Compute Biclustering on
enc ag,p

enc Biclusters(enc ag,p)

Decrypt
enc Biclusters(enc ag,p)

Biclusters(ag,p)

Fig. 1: Message Flow for Secure Processing of CCA

Our Secured CCA (SeCCA) proceeds along the same steps as the original
non-secured biclustering algorithm [2]; however, in our approach, any computa-
tion – in particular, the mean squared residue score – is performed over encrypted
data. It takes an input matrix (encrypted homomorphically on the cell level ag,p),
number of biclusters, MSR threshold (maximum mean squared residue accepted
(δ parameter in the original study)), scaling factor, and minimum number of
columns. It returns the list of biclusters for the given data set.

4.2 Implementation

We here represent our proposed secure analysis of Cheng and Church biclus-
tering algorithm based on homomorphic encryption as the main contribution
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Table 2: SeCCA Steps

Step Main Idea / Description

1 HE over maximum mean squared residue accepted
(((enc maxV alue− enc minV alue)2)/12) · 0.005

2 Computation of mean squared residue score of rows, columns and full data
matrix: 1

|I||J|
∑

i∈I,j∈J((enc aij)− (enc aiJ)− (enc aIj) + (enc aIJ))
2

3 Computation of mean squared residue score of columns for node addition step
1
|I|

∑
i∈I((enc aij)− (enc aiJ)− (enc aIj) + (enc aIJ))

2

4 Computation of mean squared residue score of the rows and the inverse of
the rows for node addition step: 1

|J|
∑

j∈J((enc aij)− (enc aiJ)− (enc aIj) +

(enc aIJ))
2 and 1

|J|
∑

j∈J(−(enc aij) + (enc aiJ)− (enc aIj) + (enc aIJ))
2

5 HE over rows to remove in multiple node deletion step
1
|J|

∑
j∈J((enc aij)− (enc aiJ)− (enc aIj) + (enc aIJ))

2 > α(enc H(I, J))

6 HE over columns to remove in multiple node deletion step
1
|I|

∑
i∈I((enc aij)− (enc aiJ)− (enc aIj) + (enc aIJ))

2 > α(enc H(I, J))

7 HE over rows to add in node addition step
1
|J|

∑
j∈J((enc aij)− (enc aiJ)− (enc aIj) + (enc aIJ))

2 ≤ (enc H(I, J))

8 HE over the inverse of the rows to add in node addition step
1
|J|

∑
j∈J(−(enc aij) + (enc aiJ)− (enc aIj) + (enc aIJ))

2 ≤ (enc H(I, J))

9 HE over the columns to add in node addition step
1
|I|

∑
i∈I((enc aij)− (enc aiJ)− (enc aIj) + (enc aIJ))

2 ≤ (enc H(I, J))

to a project done by Padilha et al. [16] which provides us by the implemen-
tation of the original algorithm, yeast cell cycle data set and Clustering Error
(CE). Our procedure provides an encrypted version of the algorithm in which
the efficient node-deletion algorithm was introduced to search for submatrices
in expression data with low mean squared residue score [2]. Based on different
types of computations needed in the procedure that can potentially be trans-
ferred to the public cloud services, we summarise the required steps of SeCCA
with homomorphic encryption operations in Table 2; therefore, one can choose
an appropriate computation step for a desired task. Our main focus is on steps
1 to 4 to find out how to secure the calculation of mean squared residue in dif-
ferent stages. Although homomorphic encryption provides an elegant solution in
machine learning in theory, however, several limitations hamper its implemen-
tation; a particular limitation in real-world platforms is the lack of evaluating
comparisons and conditional selections [17] on encrypted data – this limitation
also applies to the Pyfhel platform we used in our experiments. We propose a
multi-round interactive execution of the conditional checking part by involving
the data owner to decrypt a small integer and compare it to the plaintext 0. The
workflow is interactive due to restrictions of the chosen framework in support
of full workflow. While it will be the main goal of our future to obtain a non-
interactive evaluation of the branching conditionals, we would like to emphasise
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that the non-interactive workflow can also cause computational overhead and be
more expensive to follow compared to the interactive fashion (e.g., employing
optimised CPU). Besides, division homomorphically into a plaintext in Pyfhel
is possible for fractional encoding. In this study, we rewrite steps 5 to 9 having
conditional statements to remove/add nodes into a non-encrypted approach (ex-
ecuted on the data owner side) and present schematic diagrams of these steps in
Figures 2 to 4 that is similar to the workflow (depicted in Figure 1).

Step 1. In step 1, encrypted versions of minimum and maximum values of the
input data matrix are utilised for further computation of the maximum mean
squared residue accepted. Here in this step, the data owner sends encrypted
minimum and maximum values of the data matrix (similar to message 2 in Figure
1) to the public cloud service because of the problems mentioned earlier. Then,
computation of step 1 occurs in the storage system by having encrypted input
parameters (i.e., enc maxValue and enc minValue); the result can be returned
to the data owner or can be reused by the cloud storage for further computation:

enc MSR thr = (((enc maxV alue− enc minV alue)2)/12) · 0.005

The data owner can decrypt and obtain the result by private key:
Decsk(enc MSR thr).

Step 2. To measure the mean squared residue score (step 2), first, we need to
compute the mean of the rows, the columns, and the submatrix over encrypted
values. The data owner defines a submatrix of the input data (submatrixij)
and passes it after encryption within a NumPy array to the storage system;
there, the mean value of the rows (axis=1 of encrypted submatrix), the columns
(axis=0 of encrypted submatrix) and the submatrix are determined by ho-
momorphic encryption over NumPy arrays. Hence, predefined arithmetic op-
erations (e.g., −, +) to calculate residue (enc residueij) and squared residue
(enc squaredResidueij) of elements in the data matrix are applied in the ci-
phertext. For each submatrix cell ai,j we hence obtain its encrypted residue as
well as squared residue (confer the plaintext counterparts in Section 3.1):

enc residueij = enc submatrixij − enc rowMeansi − enc colMeansj

+enc submatrixMean

enc squaredResidueij = (enc residueij)
2

Afterwards, the storage system continues the process of finding the mean
value of the squared residue (enc MSR) of the elements by taking the sum of
the encrypted squared residue (a NumPy operation)and its length to further
divide a ciphertext (sum value of the encrypted squared residue) into a plaintext
(length of the encrypted squared residue) and sends back the final result to the
data owner: enc MSR = mean(enc squaredResidueij) over all rows i and all
columns j in the submatrix. Then decryption can be performed by the data
owner: Decsk(enc MSR). An approach similar to step 2 is taken for step 3
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(with a difference in the computation which takes place on the subsets of the
rows as well) and step 4 (computation of mean squared residue is considered for
both rows and the inverse of the rows).

Data Owner (Patient) Data Storage (cloud)

Computation of secure
enc MSR thr, enc MSR,
enc rowMSR

enc MSR thr,
enc MSR,
enc rowMSR

Decrypt
enc MSR thr,
enc MSR,
enc rowMSR

MSR thr, MSR, rowMSR

Type 5: rows2Remove =
(rowMSR> α· MSR)

rows2Remove

Data Owner (Patient) Data Storage (cloud)

Computation of secure
enc MSR thr, enc MSR,
enc colMSR

enc MSR thr,
enc MSR,
enc colMSR

Decrypt
enc MSR thr,
enc MSR,
enc colMSR

MSR thr, MSR, colMSR

Type 6:
cols2Remove =
(colMSR>MSR thr)

cols2Remove

Fig. 2: Rows and Columns to Remove in Multiple Node Deletion Step (SeCCA
steps 5 and 6)

Data Owner (Patient) Data Storage (cloud)

Computation of secure
enc MSR, enc rowMSR

enc MSR,
enc rowMSR

Decrypt
enc MSR,
enc rowMSR

MSR, rowMSR

Type 7:
rows2Add =
(rowMSR≤MSR)

rows2Add

Data Owner (Patient) Data Storage (cloud)

Computation of secure
enc MSR, enc inverseMSR

enc MSR,
enc inverseMSR

Decrypt
enc MSR,
enc inverseMSR

MSR, inverseMSR

Type 8:
inverseRows2Add =
(inverseMSR≤MSR)

inverseRows2Add

Fig. 3: Rows and Inverted of the Rows to Add in Node Addition Step (SeCCA
steps 7 and 8)

5 Experiments

In this study, we have used the yeast cell cycle expression data that was used
for testing the original implementation of the algorithm [2]. The data consists
of 2884 genes and 17 conditions; a matrix of integers in the range between 0
and 600 that were selected according to Tavazoie et al. [18]. Missing data are
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Data Owner (Patient) Data Storage (cloud)

Computation of secure
enc MSR, enc colMSR

enc MSR,
enc colMSR

Decrypt
enc MSR,
enc colMSR

MSR, colMSR

Step 9: cols2Add
= (colMSR≤MSR)

cols2Add

Fig. 4: Columns to Add in Node Addition Step (SeCCA step 9)

also replaced with generated random numbers that form a uniform distribution
between 0 and 800. Furthermore, these random values are the candidates to get
removed in the node deletion phase as they would not form recognisable patterns
[2]. Additionally, we have executed our experiment on synthetic data sets based
on the bicluster model (i.e., constant) according to a procedure developed by
[16]. Thus, for further testing in this paper, we focus on making a constant data
set consisting of 300 rows, 50 columns with 5 biclusters as a sample data set.
We measured the performance of encryption and decryption processes inside
SeCCA steps 1 to 4. We then carried out the comparison of the secured version
of the algorithm with the original one to examine the accuracy of our proposed
approaches. We used the homomorphic encryption functionalities available in
Pyfhel [12] provides such as addition, multiplication, exponentiation, or scalar
product that uses a similar syntax to normal arithmetic (+, -, *). The number of
biclusters was determined based on the current hardware resources and without
increasing the complexity of the implementation phase. Each step generates 5
biclusters, with a number of genes and conditions with a possible degree of
overlap. In this paper, we apply Clustering Error (CE), achieving better results
in the empirical analysis [16]. The CE measure ranges over the interval [0, 1],
with higher values indicating better solutions. The CE is formulated as:

CE(A, Â) :=
dmax

|U |
where dmax is a measure of intersection of biclusterings and |U | the total space
covered by the biclusterings considering overlaps [3]. We perform a comparison
of the four encrypted versions, steps 1 to 4 of the Cheng and Church algo-
rithm to the non-encrypted version (as the ground truth) by CE over the input
data set. By comparing step 1 of SeCCA with the non-encrypted Cheng and
Church algorithm (CCA), the corresponding evaluation measure CE shows an
outstanding result with a score of 0.97662. Similarly, step 3 of SeCCA repre-
sents a considerably high similarity score close to 1 with 0.99611. Despite the
high similarity of steps 1 and 3 to CCA, our experiment produces striking dis-
similarity among step 2 and the non-encrypted version of CCA with a score of
0.10659. We tried to improve this result by adjusting different HE parameters
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(like p=65537, m=4096, base=2, intDigits=16, fracDigits=64) as parameter
setting 2 in Figure 5 and 6, resulting in a slight improvement reaching a score of
0.18207 (further information about HE parameters in Section 3.2). In Figure 5
(a), results of accuracy between two different HE parameter settings over yeast
cell cycle data set are shown. An improvement can be seen in the performance
of step 4 with a score of 0.32225. Consequently, the combination of the four
aforementioned steps is affected by what we achieved so far in steps 2 and 4,
thus showing a notable difference between SeCCA and CCA with 0.10458. Ac-
tually, the context of Pyfhel in our project is set according to available hardware
resources to make the project run on a large amount of data. The settings in-
clude adapting the parameter fracDigits which specifies the number of bits that
are used to encode the fractional part; thus, all the fractional parts, in case of
an insufficient amount of this parameter, will be coerced into invalid result. We
observed that the noise budget can reach zero soon after each squaring residue
operation leading to an incorrect decrypted result. To solve these issues, we set
the encryption parameters to have a high noise budget and enough fraction dig-
its at the beginning. Still, there is room for improving accuracy in working with
floating points by changing to the appropriate schemes. To compare the resulting
biclusters with another data set, we choose synthetic data based on the constant
bicluster model. Figure 5 (b) depicts the CE scores on yeast gene expression
data and synthetic data for individually implemented steps (1 to 4) and their
combinations.
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Fig. 5: Comparison of SeCCA with CCA by CE

Computational Performances We conduct the experiment on a single server
with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz and 131182528 kB RAM
with Rocky Linux 8.6 (Green Obsidian). The Python version used in the project
is 3.8 on the PyCharm environment. Table 3 demonstrates the time performance
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of encryption and decryption for four implemented steps of SeCCA (steps 1 to
4) and 5 biclusters for yeast gene expression data and Table 3 for time perfor-
mance of these steps on synthetic data. Hence other parts of the code in each
step that run without homomorphic encryption can be found by subtracting the
total execution time from the summation of encryption and decryption time.
Large-scale gene expression data sets such as our two-dimensional input ma-
trices need Pyfhel’s vector operations; thus, it leads to dramatically increased
execution time in performing computationally intensive tasks, including mul-
tiplication, compared to the non-encrypted Cheng and Church algorithm. As
shown in Table 3, there is relatively no delay in doing encryption on maximum
mean squared residue accepted homomorphically (step 1) with 0.0372 seconds in
encrypting and 0.00254 for decryption of required parameters. Although, it takes
a considerable amount of time for the remaining three steps to complete their
tasks (encryption, decryption), where the computation of mean squared residue
for node deletion/addition relies on a number of loops and different homomor-
phic encryption operations. Step 2 of SeCCA is one of the most time-consuming
tasks by far, with 26513.85849 seconds executing encryption tasks (which also
takes 132034560 in Bytes memory after creating an instance of Pyfhel) due to its
applications in node deletion phase and recomputation of mean squared residue
score after each update in node addition step. As steps 3 and 4 are exclusively
designed for encrypting score in node addition, they show better time perfor-
mance compared to step 2 by 2081.72169 and 21393.38351 seconds, respectively,
although in node addition phase, inverted of the rows extends the computation
to form mirror images of the rest of the rows in the bicluster results (see Sec-
tion 4.2) in an increased encryption/decryption time for step 4. As discussed
earlier, we carried out our experiment on different HE parameters which leads
to increased accuracy of some steps. Figure 6 is provided in order to present the
effects of these changes in time performance (encryption and decryption) over
yeast cell cycle expression data. We also tested the execution time of individual
steps (1 to 4) for the generated synthetic data that consists of 300 rows and 50
columns; Table 3 represents the encryption as well as decryption time.

Table 3: Time performance (encryption and decryption) of steps 1 to 4 of SeCCA
for Yeast Gene Expression Data (left) and Synthetic Data (right)

Step Encr. Time (Sec.) Decr. Time (Sec.) Step Encr. Time (Sec.) Decr. Time (Sec.)

1 0.0372 0.00254 1 0.03656 0.00247
2 26513.85849 104.25779 2 6918.90463 33.05609
3 2081.72169 0.73747 3 522.23543 0.85587
4 21393.38351 173.88712 4 1629.95298 12.71682
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Fig. 6: Time Performance According to Different HE Parameter Settings on Yeast
Cell Cycle Data

6 Conclusion and Future Work

In this paper, we proposed the Secured Cheng and Church Algorithm (SeCCA)
to find a given number of biclusters with predefined parameters and showed the
applicability of homomorphic encryption over biclustering algorithms – particu-
larly Cheng and Church algorithm – with a number of steps encrypted with ho-
momorphic operations. To the best of our knowledge, the Secured version of the
Cheng and Church algorithm (SeCCA) is the first application of homomorphic
encryption in biclustering algorithms that enhances the overall genomic privacy
of data owners. Based on what we have achieved so far, homomorphic encryp-
tion operations are capable of calculating the maximum mean squared residue
accepted and mean squared residues score in both phases (node deletion and
addition) for an input data matrix with predefined parameters. Our experiment
throughout steps 1 to 4 reveals a meaningful analysis of the sample yeast gene
expression data and synthetic data based on a constant bicluster model with 5
biclusters and subsets of rows and columns (genes and conditions, respectively).
Each step provides partial security for the entire procedure. SeCCA follows the
original algorithm, but the number of biclusters is reduced to run the project
in a reasonable amount of time. Moreover, nine SeCCA steps were determined
to represent the overall required computations that are part of the Cheng and
Church algorithm, and the storage system (public cloud service) is responsible
for their execution. Among them, only four steps have specific computations
that were feasible with the applied homomorphic encryption library; for the rest
of the SeCCA steps, we have to rewrite the expressions in future work. Com-
putational performance is greatly affected by the algorithm’s complexity, which
consists of heavy-duty computations (e.g., multiplication), leaving room for fu-
ture improvements. We also compare SeCCA with the original algorithm by the
external evaluation measure, Clustering Error (CE). As future work, we plan to
improve the overall accuracy of SeCCA and increase the scalability of our ap-
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proach (in particular regarding the number of biclusters) for which performance
optimisation is required. To generate a fully secure version of the Cheng and
Church algorithm, it is of great importance to come up with further practical
approaches to modify statements in steps 5 to 9 straightforwardly. We will also
address the computational performance in future work. One possible solution to
optimise performance is the packing mechanism. SIMD has been implemented
for integers in Pyfhel==2.3.1; however, homomorphic encryption operations rely
on floating-point numbers in our application so that, we will consider the CKKS
scheme with SIMD packing for improved performance in terms of computational
overhead and accuracy. Moreover, we aim to generalise privacy-preserving gene
expression data analysis by extending our approach to other biclustering algo-
rithms and developing a secure biclustering platform with the aim to achieve a
profound impact on personalised medicine, regardless of existing limitations of
current homomorphic encryption libraries.
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