
Implementing Inductive Concept Learning For
Cooperative Query Answering

Maheen Bakhtyar1?, Nam Dang2??, Katsumi Inoue3, and Lena Wiese4

1 Asian Inst. of Technology Bangkok, Thailand, Maheen.Bakhtyar@ait.asia
2 University of Göttingen, Göttingen, Germany, lena.wiese@udo.edu
3 National Inst. of Informatics, Tokyo, Japan, inoue@nii.ac.jp
4 Tokyo Inst. of Technology, Tokyo, Japan, namd@de.cs.titech.ac.jp

Abstract. Generalization operators have long been studied in the area of Concep-
tual Inductive Learning (Michalski, 1983; De Raedt, 2010). We present an imple-
mentation of these learning operators in a prototype system for cooperative query
answering. The implementation can however also be used as a usual concept learn-
ing mechanism for concepts described in first-order predicate logic. We sketch an
extension of the generalization process by a ranking mechanism on answers for the
case that some answers are not related to what user asked.

1 Introduction

Conceptual inductive learning is concerned with deriving a logical descrip-
tion of concepts (in a sense, a classification) for a given set of observations
or examples; in induction, the resulting description is also called a hypoth-
esis. Background knowledge can support the concept learning procedure. In
his seminal paper on inductive learning, Michalski (1983) introduced and sur-
veyed several learning operators that can be applied to a set of examples to
obtain (that is, induce) a description of concepts; each concept subsumes (and
hence describes) a subset of the examples. He further differentiates inductive
learning into concept acquisition (where a set of examples must be classified
into a predefined set of concepts) and descriptive generalization (where a set
of observations must be classified into a newly generated and hence previously
unknown set of concepts). In a similar vein, de Raedt (2010) emphasizes the
importance of logic representations for learning processes as follows:

“To decide whether a hypothesis would classify an example as posi-
tive, we need a notion of coverage.[...] In terms of logic, the example
e is a logical consequence of the rule h, which we shall write as h |= e.

? M.B. is currently a PhD student at AIT, Bangkok.
?? N.D. is currently a Master student at TITech, Tokyo.



2 Maheen Bakhtyar, Nam Dang, Katsumi Inoue, and Lena Wiese

This notion of coverage forms the basis for the theory of inductive
reasoning[...]
Especially important in this context is the notion of generality. One
pattern is more general than another one if all examples that are cov-
ered by the latter pattern are also covered by the former pattern.[...]
The generality relation is useful for inductive learning, because it can
be used 1) to prune the search space, and 2) to guide the search to-
wards the more promising parts of the space.[...] Using logical descrip-
tion languages for learning provides us not only with a very expressive
and understandable representation, but also with an excellent theoret-
ical foundation for the field. This becomes clear when looking at the
generality relation. It turns out that the generality relation coincides
with logical entailment.[...]”

In this paper we present the implementations of three logical generaliza-
tion operators: Dropping Condition (DC ), Anti-Instantiation (AI ) and Goal
Replacement (GR). The novelty of our approach lies in the fact that these
operators are combined iteratively. In other words, several successive steps of
generalization are applied and operators can be mixed. Our work is based on
the soundness results of an optimized iteration that can be found in Inoue
and Wiese (2011); the main result there is that it is sufficient to apply these
three operators in a certain order: starting with GR applications, followed by
DC applications and ending with AI applications (see Figure 1). This order
is employed in our system when applying the three operators iteratively in a
tree-like structure.

Q(X)

DC

DC

DC
...

AI
...

AI

AI
...

AI

AI

AI
...

GR

DC

DC
...

AI
...

AI

AI
...

GR

DC
...

AI
...

GR
...

G0:

G1:

G2:

G3:

Fig. 1. Tree-shaped combination of DC, AI and GR

To the best of our knowledge, the iteration of these three operators is
also novel when learning concepts from a set of examples. In this paper we
present generalization as an application for a cooperative query answer system
CoopQA: it applies generalization operators to failing queries which unsat-
isfactorily result in empty answers; by applying generalization operators we
obtain a set of logically more general queries which might have more answers
(called informative answers) than the original query. The implementation can
however also be used in a traditional concept learning setting – that is, learn-
ing concepts by iterative generalization: as such we see the failing query as



Implementing Inductive Concept Learning 3

an initial description of a concept (which however does not cover all posi-
tive examples contained in a knowledge base); we then use our tree-shaped
generalization until all positive examples can be derived as informative an-
swers to the more general query (and hence we have obtained a more general
description of the initial concept).

More formally, we concentrate on generalization of conjunctive queries
that consist of a conjunction (written as ∧) of literals li; a literal consists of a
logical atom (a relation name with its parameters) and an optional negation
symbol (¬) in front. We write Q(X) = l1 ∧ . . .∧ ln for a user’s query where X
is a free variable occurring in the li; if there is more than one free variable, we
separate variables by commas. The free variables denote which values the user
is looking for. Consider for example a hospital setting where a doctor asks for
illnesses of patients. The query Q(X) = ill(X,flu) ∧ ill(X, cough) asks for all
the names X of patients that suffer from both flu and cough. A query Q(X)
is sent to a knowledge base Σ (a set of logical formulas) and then evaluated
in Σ by a function ans that returns a set of answers (a set of formulas that
are logically implied by Σ); as we focus on the generalization of queries, we
assume the ans function and an appropriate notion of logical truth given.
Note that (in contrast to the usual connotation of the term) we also allow
negative literals to appear in conjunctive queries; we just require Definition
1 below to be fulfilled while leaving a specific choice of the |= operator open.
Similarly, we do not put any particular syntactic restriction on Σ. However,
one of the generalization operators scans Σ for “single-headed range-restricted
rules” (SHRRR) which consists of a body part left of an implication arrow
(→) and a head part right of the implication arrow. The body of a SHRRR
consists of a disjunction of literals whereas the head consists only of one sin-
gle literal: li1 ∧ . . .∧ lim → l′; range-restriction requires that all variables that
appear in the head literal also appear in one of the body literals; again, we
also allow negative literals in the body and in the head. As a simple example
for a SHRRR consider ill(X,flu)→ treat(X,medi) which describes that every
patient suffering from flu is treated with a certain medicine.
CoopQA applies the following three operators to a conjunctive query (which
– among others – can be found in the paper of Michalski (1983)):
Dropping Condition (DC ) removes one conjunct from a query; applying
DC to the example Q(X) results in ill(X,flu) and ill(X, cough).
Anti-Instantiation (AI ) replaces a constant (or a variable occurring at least
twice) in Q(X) with a new variable Y ; ill(Y,flu) ∧ ill(X, cough), ill(X,Y ) ∧
ill(X, cough) and ill(X,flu) ∧ ill(X,Y ) are results for the example Q(X).
Goal Replacement (GR) takes a SHRRR from Σ, finds a substitution θ
that maps the rule’s body to some conjuncts in the query and replaces these
conjuncts by the head (with θ applied); applying the example SHRRR to
Q(X) results in treat(X,medi) ∧ ill(X, cough).
These three operators all fulfill the following property of deductive general-
ization (which has already been used by Gaasterland et al (1992)) where φ is
the input query and ψ is any possible output query:



4 Maheen Bakhtyar, Nam Dang, Katsumi Inoue, and Lena Wiese

Definition 1 (Deductive generalization wrt. knowledge base). Let Σ
be a knowledge base, φ(X) be a formula with a tuple X of free variables, and
ψ(X,Y) be a formula with an additional tuple Y of free variables disjoint
from X. The formula ψ(X,Y) is a deductive generalization of φ(X), if it
holds in Σ that the less general φ implies the more general ψ where for the
free variables X (the ones that occur in φ and possibly in ψ) the universal
closure and for free variables Y (the ones that occur in ψ only) the existential
closure is taken:

Σ |= ∀X∃Y (φ(X)→ ψ(X,Y))

In the following sections, we briefly present the implementation of the CoopQA
system (Section 2) and show a preliminary evaluation of the performance
overhead of iterating generalization operators (Section 3).

2 Implementation Details

The focus of CoopQA lies on the efficient application of the underlying gen-
eralization operators. As CoopQA applies the generalization operators on the
original query in a combined iterative fashion, the resulting queries may con-
tain equivalent queries, which only differ in occurrences of variables or order
of literals. CoopQA thus implements an equivalence checking mechanism to
eliminate such duplicate queries. The most important step of query equiva-
lence checking is finding substitutions between two queries. CoopQA tries to
rearrange the literals in the two queries such that the substitutions can be
obtained by mapping the variables in the two queries according to their po-
sitions. Instead of finding the substitution over the whole of the two queries,
we segment the queries into segments of pairwise equivalent literals and find
the correct ordering for each pair of corresponding segments. We now briefly
sketch how each operator is implemented:
Dropping Condition (DC ): For a query of length n (i.e., n literals in the
query), n generalized queries are generated by dropping one literal. As this
involves replicating the n − 1 remaining literals, run-time complexity of DC
is O(n2).
Anti-Instantiation (AI ): If a query of length n contains M occurrences of
constants and variables, at most M generalized queries (each of length n) are
generated. Assume that the query was divided into r segments, then the lit-
eral affected by anti-instantiation has to be removed from its segment and the
anti-instantiated literal with the new variable has to be placed into a (possibly
different) segment; finding this segment by binary search requires log r time
(which is less than n). Thus, run-time complexity of AI is O(Mn).
Goal Replacement (GR): GR, as described in Section 1 (and in more de-
tail in Inoue and Wiese (2011)), requires finding parts of the query that are
subsumed by the body of a given SHRRR. The definition of subsumption
is that a logical formula R(X) subsumes Q(Y ) if there is a substitution θ



Implementing Inductive Concept Learning 5

such that R(X)θ = Q(Y ). Our implementation uses a generator that takes
the query and the rule’s body as input, and produces matchings of the body
against the rule. We apply relaxed segmentation upon the two lists of liter-
als (of the query and of the rule’s body), which requires equivalent literals to
only have the same predicate. For example, q(X,Y ) and q(a, Z) are considered
equivalent literals in this case. We then perform matching upon corresponding
equivalent segments of the query against the segments of the rule’s body to
obtain a list of literals that are subsumed by the rule’s body. Note that the
segments in the query and the rule’s body need not have the same size, as long
as all the segments in the rule’s body are found in the query. The matching
literals are then replaced in the query by the rule’s head, which already has
the substitution applied.
The worst case scenario of GR is when both the query and the rule contain
only one segment of (relaxed) equivalent literals. Given a query of size n, a
rule with the body of size k (n ≥ k), the number of possible matchings of k out
of n literals from the query against the rule is

(
n
k

)
. For each combination of k

literals, we have to perform permutation to find the correct ordering to deter-
mine the substitution against the rule body. Thus, in the worst case, the cost
of finding the substitution for each combination is k!. Hence, complexity of
finding all matchings of the query against the rule’s body is O(k!

(
n
k

)
). In gen-

eral, for a rule with a body of s segments, each of length ki, and a query with
s corresponding segments, each of length ni, complexity is O(

∑s
i=1(ki!

(
ni

ki

)
)).

3 Performance Evaluation

We present some benchmarking and performance evaluation results of our
implementation of the generalization operators. We focus on the cost of the
tree-shaped generalization process.

Our benchmark suite generates a random knowledge base and query which
consists large set of a combinations of illnesses and treatments from our med-

0 1 2 3 4 5 6 7 8

0

2

4

6

8

10

12

14

16

18

Effect of Query Length
Query Length vs. Execution time

AI
DC
GR
Total

Query Length (# of literals in the query)

T
im

e
 (

s
)

1 2 3 4 5 6 7 8

0

5

10

15

20

25

30

35

Effect of Rule's Body Length
Rule's Body vs. Execution Time

AI
DC
GR
Total

Rule's Body Length (# of literals in the body)

T
im

e
 (

s
)

Fig. 2. Effects of query length and rule body length



6 Maheen Bakhtyar, Nam Dang, Katsumi Inoue, and Lena Wiese

ical example. We chose this synthetic data set because goal replacement has
to capture the semantic dependencies in the data expressed by rules; so far
we could not find any real-world benchmark with appropriate rules for goal
replacement.

We analyze the effects on execution time by varying various parameters
such as query length, number of SHRRRs in the knowledge base and the
length of rule bodies. The runtime graphs show the time spent on each of the
three operators alone as well as their summed total execution time. The tests
were run on a PC under Linux 2.6 with a 64 bit Ubuntu 10.04 using Java 1.6
with OpenJDK Runtime Environment 6. The PC had 8 GB of main memory
and a 3.0 Ghz Quad Core processor.

We first analyze how query length affects execution time of generalization.
Figure 2 shows the total time taken by each operator when running CoopQA
for a certain query length (that is, number of literals). We observe an increase
in the execution time of AI operator after query length 5 as potentially more
AI operations are possible; in case of DC and GR operation, effect of query
length on the execution time is negligible. Analyzing the effect of number of
rules contained in the knowledge base shows that the total execution time
increases with the number of rules as shown in Figure 3. Closely investigating
each operator reveals that there is no significant change in execution time in
case of AI. In case of DC it is again negligible; however, we observe a linear
increase in execution time in case of GR and that is because of increased
matching and replacement. Lastly, there is no effect on DC and GR execution

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

0

10

20

30

40

50

60

Knowledge Base Size vs. Execution Time

AI
DC
GR
Total

Knowledge Base Size (# of rules)

T
im

e
 (

s
) 

Fig. 3. Effects of number of rules

time when rule bodies are longer (see Figure ??). Yet, time decreases for AI.
This is due to the replaced part of the query: a long rule body makes the
query shorter by replacing a longer part of the query with one literal; hence
less AI operations are possible.

Profiling our code using VisualVM5 shows that AI operation takes up
48.4% of the total execution time; the main cost lies in performing equivalence

5 http://visualvm.java.net/



Implementing Inductive Concept Learning 7

checking to detect duplicated queries when a new one is generated (taking up
to 33.6% of total execution time). GR’s main bottleneck is to replace matched
literals to generate queries, not the matching against rules itself.

4 Discussion and Conclusion

The CoopQA system uses three generalization operators that were widely
used for inductive learning of concepts; it applies them in a cooperative query
answering system in order to discover information for a user which might be
related to his query intention. In contrast to other approaches using DC, AI
and GR, tree-shaped generalization profits from an efficient combination of the
three operators. The presented implementation shows favorable performance
of the generalization operators. Future and ongoing work in the CoopQA
system is covering the important issue of answer relevance which we discuss
briefly: some answers might be generalized “too much” and are “too far away”
from the user’s query intention; a relevance ranking for answers can provide
the user with the most useful answers while disregarding the irrelevant ones.
In particular, a threshold value for answer ranks can be specified to return only
the most relevant answers to the user and an aggregation of ranks reflecting
the iteration of operators must be defined. Dropping Conditions and Goal
Replacement are purely syntactic operators that do not introduce new vari-
ables. A relevance ranking for them can be achieved by assigning the answers
to generalized queries a penalty for the dropped or replaced conditions. In
contrast, anti-instantiation leads to the introduction of a new variable. Recall
from Section 1 the example query Q(X) = ill(X,flu)∧ ill(X, cough) that asks
for patients suffering from flu and cough at the same time. Applying AI on
the constant cough leads to the generalized query ill(X,flu)∧ ill(X,Y ) where
the condition of cough is relaxed and any other disease would be matched
to the new variable Y . These diseases might be very dissimilar to cough and
hence totally irrelevant from the point of view of the original query Q(X).
A more intelligent version of the AI operator can hence rank the answer to
the generalized query regarding their similarity to the original query. Here we
have to differentiate between the case that a constant was anti-instantiated,
and the case that a variable was anti-instantiated. More precisely, within a
single application of the AI operator, we can assign each new (more general)
answer ansj the rank value rank j , where the rank is calculated as follows:

• if Y is the anti-instantiation of a constant c (like cough in our example),
we obtain the similarity between the value of Y in answer ansj (written
as val j(Y )) and the original constant c; that is, rank j = sim(val j(Y ), c).

• if Y is the anti-instantiation of a variable (like in the generalized query
ill(Y,flu) ∧ ill(X, cough) where different patients X and Y are allowed),
we obtain the similarity between the value of Y in ansj and the value of
the variable (say, X) which is anti-instantiated by Y in the same answer;
that is, rank j = sim(val j(Y ), val j(X)).



8 Maheen Bakhtyar, Nam Dang, Katsumi Inoue, and Lena Wiese

Let us assume we have predefined similarities sim(bronchitis, cough) = 0.9 and
sim(brokenLeg , cough) = 0.1 for our example. An answer containing a patient
with both flu and bronchitis would then be ranked high with 0.9; whereas an
answer containing a patient with both flu and broken leg would be ranked
low with 0.1. Such similarities can be based on a taxonomy of words (or an
ontology); in our example we would need a medical taxonomy relating several
diseases in a hierarchical manner. Several notions of distance in a taxonomy
of words can be used (e.g., Shin et al (2007)) to define a similarity between
each two words in the taxonomy (e.g., Wu and Palmer (1994)). When the
AI operator is applied repeatedly, similarities should be computed for each
replaced constant or variable; these single similarities can then be combined
into a rank for example by taking their weighted sum. To make the system
more adaptive to user behavior, the taxonomy used for the similarities can be
revised at runtime (with an approach as described in Nikitina et al (2012)).

References

DE RAEDT, L. (2010): About Knowledge and Inference in Logical and Relational
Learning. In Advances in Machine Learning II, pp. 143–153, Springer.

GAASTERLAND, T., GODFREY, P. and MINKER, J. (1992): Relaxation as a
platform for cooperative answering. Journal of Intelligent Information Systems,
1(3/4), pp. 293–321.

INOUE, K. and WIESE, L. (2011): Generalizing conjunctive queries for informative
answers. In 9th International Conference on Flexible Query Answering Systems.
Lecture Notes in Artificial Intelligence, vol. 7022, pp. 1–12, Springer.

MICHALSKI, R. S. (1983): A Theory and Methodolgy of Inductive Learning. In
Machine Learning: An Artificial Intelligence Approach, pp. 111–161, TIOGA
Publishing.

MUSLEA, I. (2004): Machine learning for online query relaxation. In Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 246–255, ACM.

NIKITINA, N., RUDOLPH, S. and GLIMM, B. (2012): Interactive ontology revi-
sion. In Journal of Web Semantics 12, pp. 118–130.

SHIN, M. K., HUH, S.-Y. and LEE, W. (2007): Providing ranked cooperative query
answers using the metricized knowledge abstraction hierarchy. In Expert Sys-
tems with Applications, 32(2), pp. 469–484.

WU, Z. and PALMER, M. (1994): Verb Semantics and Lexical Selection. In 32nd
Annual Meeting of the Association for Computational Linguistics, pp. 133–138,
Morgan Kaufmann Publishers.


