
Ontology-Driven Data Partitioning and
Recovery for Flexible Query Answering

Lena Wiese

Institute of Computer Science
University of Göttingen

Goldschmidtstraße 7
37077 Göttingen

Germany
lena.wiese@uni-goettingen.de

Abstract. Flexible Query Answering helps users find relevant informa-
tion to their queries even if no exactly matching answers can be found
in a database system. However, relaxing query conditions at runtime is
inherently slow and does not scale as the data set grows. In this pa-
per we propose a method to partition the data by using an ontology
that semantically guides the query relaxation. Moreover, if several dif-
ferent partitioning strategies are applied in parallel, a lookup table is
maintained in order to recover the ontology-driven partitioning in case
of data loss or server failure. We tested performance of the partitioning
and recovery strategy with a distributed SAP HANA database.

Keywords: Query Relaxation, Anti-Instantiation, Recovery, Distributed
Database

1 Introduction

When storing large-scale data sets in distributed database systems, these data
sets are usually partitioned into smaller subsets and these subsets are distributed
over several database servers. When answering queries in such a distributed
database system, it might be necessary to contact several servers to collect
matching data records. It is hence worthwhile to improve data locality of the
partitioning approach such that the amount of servers involved in answering a
single query is reduced. In this paper we improve data locality for a partition-
ing that can be used in an intelligent query answering system. These intelligent
query answering mechanisms are increasingly important to find relevant answers
to user queries. Flexible (or cooperative) query answering systems help users of
a database system find answers related to his original query in case the original
query cannot be answered exactly. Semantic techniques rely on taxonomies (or
ontologies) to replace some values in a query by others that are closely related ac-
cording the taxonomy. This can be achieved by techniques of query relaxation –
and in particular query generalization: the user query is rewritten into a weaker,
more general version to allow for related answers.

In this paper we make the following contributions:



2

– we introduce ontology-driven data partitioning that is based on a semantic
clustering of values in a column,

– we apply different partitioning strategies (ontology-driven vs. round robin)
to several columns of a database table with the aim to show improved data
locality for flexible query answering in a distributed database,

– we describe a recovery procedure based on a replicated lookup table,
– we present performance tests of the query answering procedure as well as

the recovery procedure based on the Medical Subject Headings (MeSH) in
a distributed SAP HANA database that shows that ontology-driven parti-
tioning leads to lower execution times for flexible query answering with less
servers involved while still allowing for a fast recovery.

1.1 Organization of the article

Section 2 introduces the main notions used in this article and gives an illustrative
example. Section 3 describes ontology-driven query answering, Section 4 shows
query answering with derived partitions, Section 5 analyzes the update behav-
ior, Section 6 discusses deletions and Section 7 presents a recovery procedure.
Related work is presented in Section 8 and Section 9 concludes this article with
suggestions for future work.

2 Background and example

2.1 Query generalization

Query generalization has long been studied in flexible query answering [13].
Query generalization at runtime has been implemented in the CoopQA sys-
tem [8] by applying three generalization operators to a conjunctive query. Anti-
Instantiation (AI) is one query generalization operator that replaces a constant
(or a variable occurring at least twice) in a query with a new variable y. In
this paper we focus on replacements of constants because this allows for finding
answers that are semantically close to the replaced constant.

As the query language we focus on conjunctive queries expressed as logical
formulas. We assume a logical language L consisting of a finite set of predicate
symbols (denoting the table names; for example, Ill, Treat or P), a possibly infi-
nite set dom of constant symbols (denoting the values in table cells; for example,
Mary or a), and an infinite set of variables (x or y). A term is either a constant
or a variable. The capital letter X denotes a vector of variables; if the order of
variables in X does not matter, we identify X with the set of its variables and
apply set operators – for example we write y ∈ X. We use the standard logical
connectors conjunction ∧, disjunction ∨, negation ¬ and material implication
→ and universal ∀ as well as existential ∃ quantifiers. An atom is a formula
consisting of a single predicate symbol only; a literal is an atom (a “positive
literal”) or a negation of an atom (a “negative literal”); a clause is a disjunction
of atoms; a ground formula is one that contains no variables. The existential



3

(universal) closure of a formula φ is written as ∃φ (∀φ) and denotes the closed
formula obtained by binding all free variables of φ with the quantifier.

A query formulaQ is a conjunction of literals with some variablesX occurring
freely (that is, not bound by variables); that is, Q(X) = Li1 ∧ . . . ∧ Lin . The
Anti-Instantiation (AI) operator chooses a constant a in a query Q(X), replaces
one occurrence of a by a new variable y and returns the query QAI(X, y) as the
relaxed query. The relaxed query QAI is a deductive generalization of Q.

As a running example, we consider a hospital information system that stores
illnesses and treatments of patients as well as their personal information (like
address and age) in the following three database tables:

Ill PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
2784 brokenLeg
8765 Asthma
1055 brokenArm

Treat PatientID Prescription

8457 Inhalation
2784 Inhalation
8765 Inhalation
2784 Plaster bandage
1055 Plaster bandage

Info PatientID Name Address

8457 Pete Main Str 5, Newtown
2784 Mary New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown
1055 Anne High Str 2, Oldtown

The query Q(x1, x2, x3) = Ill(x1,Flu)∧ Ill(x1,Cough)∧ Info(x1, x2, x3) asks
for all the patient IDs x1 as well as names x2 and addresses x3 of patients that
suffer from both flu and cough. This query fails with the given database ta-
bles as there is no patient with both flu and cough. However, the querying user
might instead be interested in the patient called Mary who is ill with both flu
and asthma. We can find this informative answer by relaxing the query condi-
tion Cough and instead allowing other related values (like Asthma) in the an-
swers. An example generalization with AI is QAI(x1, x2, x3, y) = Ill(x1,Flu) ∧
Ill(x1, y) ∧ Info(x1, x2, x3) by introducing the new variable y. It results in an
non-empty (and hence informative) answer: Ill(2748,Flu)∧ Ill(2748,Asthma)∧
Info(2748,Mary , ‘New Str 3 ,Newtown ′). Another answer obtained is the fact
that Mary suffers from a broken leg as: Ill(2748,Flu) ∧ Ill(2748, brokenLeg) ∧
Info(2748,Mary , ‘New Str 3 ,Newtown ′).

As can be seen from the example query QAI , query relaxation by anti-
instantiation can go too far and lead to overgeneralization: while the first exam-
ple answer (with the value asthma) is a valuable informative answer, the second
one (containing broken leg) might be too far away from the user’s query interest.
Here we need semantic guidance to identify the set of relevant answers that are
close enough to the original query.



4

2.2 Ontology-Driven Partitioning

In previous work [21], a clustering procedure was applied to partition the orig-
inal tables into partitions based on single relaxation attribute chosen for anti-
instantiation; whereas concomitant research [22] handles intelligent replication
for multiple relaxation attributes. Partitioning is achieved by grouping (that is,
clustering) the values of the respective table column (corresponding to the re-
laxation attribute) and then splitting the table into partitions according to the
clusters found. The clustering relies on a similarity metrics which is derived from
paths (“proximity”) between any two terms in an ontology or taxonomy.

We assume that each of the clusterings (and hence the corresponding par-
titioning) is complete: every value in the column is assigned to one cluster and
hence every tuple is assigned to one partition. We also assume that each clus-
tering and each partitioning are also non-redundant : every value is assigned to
exactly one cluster and every tuple belongs to exactly one partition (for one of
the relaxation attributes); in other words, the partitions inside one partitioning
do not overlap.

More formally, we apply the clustering approach described in [21] (or any
other method to semantically split the attribute domain into subsets) on the
relaxation attribute, so that each cluster inside one clustering is represented by
a head term (also called prototype) and each term in a cluster has a similarity sim
to the cluster head above a certain threshold α. We then obtain a clustering-
based partitioning for the original table F into partitions as specified in the
following definition.

Definition 1 (Clustering-based partitioning). Let A be a relaxation at-
tribute; let F be a table instance (a set of tuples); let C = {c1, . . . cn} be a
complete clustering of the active domain πA(F ) of A in F ; let head i ∈ ci; then,
a set of partitions {F1, . . . , Fn} (defined over the same attributes as F ) is a
clustering-based partitioning if

– Horizontal partitioning: for every partition Fi, Fi ⊆ F
– Clustering: for every Fi there is a cluster ci ∈ C such that ci = πA(Fi) (that

is, the active domain of Fi on A is equal to a cluster in C)

– Threshold: for every a ∈ ci (with a 6= head i) it holds that sim(a, head i) ≥ α
– Completeness: For every tuple t in F there is an Fi in which t is contained

– Reconstructability: F = F1 ∪ . . . ∪ Fn

– Non-redundancy: for any i 6= j, Fi ∩ Fj = ∅ (or in other words ci ∩ cj = ∅)

For example, clusters on the Diagnosis column can be made by differenti-
ating between fractures on the one hand and respiratory diseases on the other
hand. These clusters then lead to two partitions of the table Ill that can be
assigned to two different servers:



5

Server 1:

Respiratory PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
8765 Asthma

Server 2:

Fracture PatientID Diagnosis

2784 brokenLeg
1055 brokenArm

Server 1 can then be used to answer queries related to respiratory diseases
while Server 2 can process queries related to fractures. The example query
Q(x1, x2, x3) = Ill(x1,Flu)∧Ill(x1,Cough)∧Info(x1, x2, x3) will then be rewrit-
ten into QResp(x1, x2, x3, y) = Respiratory(x1, y) ∧ Respiratory(x1,Cough) ∧
Info(x1, x2, x3) and redirected to Server 1 where only the partition Respiratory
is used to answer the query. In this way only the informative answer containing
asthma is returned – while the one containing broken leg will not be generated.
The most important advantage of the ontology-driven partitioning is that for
answering the relaxed query only a single database server is contacted; with
any other partitioning strategy that distributes data among the servers (that
is, based on ranges or hash values or in round robin fashion), the relevant data
might be distributed across several servers. If several tables are partitioned, de-
rived partitioning can be used to store the matching tuples of the other tables
(joinable by patient ID like the Info table) and hence improve data locality
during processing of join queries.

2.3 Derived Partitioning

When having several tables that can be joined in a query, data locality is impor-
tant for performance: Data that are often accessed together should be stored on
the same server in order to avoid excessive network traffic and delays. If one table
is chosen as the primary clustering table (like Ill in our example), partitioning
of related tables (like Treat and Info in our example) can be derived from the
primary partitioning. They are obtained by computing a semijoin between the
primary table and the secondary table. Each derived partition should then be
assigned to the same database server on which the primary partition with the
matching join attribute values resides. Note that while the primary partitioning
is usually non-redundant (each tuple of the original table is contained in exactly
one partition), that might not be the case for derived partitioning: one tuple of
a joinable tables might be contained in several derived partitions.

In the example, the entire partitioning for clusters on the Diagnosis column
assigned to two servers then looks as follows:



6

Server 1:

Respiratory PatientID Diagnosis

8457 Cough
2784 Flu
2784 Asthma
8765 Asthma

Treat

resp PatientID Prescription

8457 Inhalation
2784 Inhalation
8765 Inhalation
2784 Plaster bandage

Info

resp PatientID Name Address

8457 Pete Main Str 5, Newtown
2784 Mary New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown

Server 2:

Fracture PatientID Diagnosis

2784 brokenLeg
1055 brokenArm

Treat

frac PatientID Prescription

2784 Inhalation
2784 Plaster bandage
1055 Plaster bandage

Info

frac PatientID Name Address

2784 Mary New Str 3, Newtown
1055 Anne High Str 2, Oldtown

3 Ontology-driven Query Answering

To enable ontology-driven query answering, when a user sends a query to the
database, the term (that is, constant) that can be anti-instantiated has to be
extracted, the matching cluster has to be identified and then the user query has
to be rewritten to return answers covering the entire cluster.

3.1 Metadata and Test Dataset

In order to manage the partitioning, several metadata tables are maintained:

– A root table stores an ID for each cluster (column clusterid) as well as the
cluster head (column head) and the name of the server that hosts the cluster
(column serverid).

– A lookup table stores for each cluster ID (column clusterid) the tuple IDs
(column tupleid) of those tuples that constitute the clustered partition.

– A similarities table stores for each head term (column head) and each other
term (column term) that occurs in the active domain of the corresponding
relaxation attribute a similarity value between 0 and 1 (column sim).



7

Our prototype implementation – the OntQA-Replica system – runs on a
distributed SAP HANA installation which is an in-memory database system and
hence shows a fast execution without disk accesses. All runtime measurements
shown below are taken as the median of several (at least 5) runs per experiment.

The example data set consists of a table (called ill) that resembles a med-
ical health record and is based on the set of Medical Subject Headings (MeSH
[20]). The table contains as columns an artificial, sequential tupleid, a random
patientid, and a disease chosen from the MeSH data set as well as the concept
identifier of the MeSH entry. We varied the table sizes during our test runs. The
smallest table consists of 56,341 rows (one row for each MeSH term), a medium-
sized table of 1,802,912 rows and the largest of 14,423,296 rows (obtained by
duplicating the original data set 5 times and 8 times, respectively). A clustering
is executed on the MeSH data based on the concept identifier (which orders the
MeSH terms in a tree); in other words, entries from the same subconcept belong
to the same cluster. One partitioning (the clustered partitioning) was obtained
from this clustering and consists of 117 partitions which are each stored in a
smaller table called ill-i where i is the cluster ID. To allow for a comparison and
a test of the recovery strategy, another partitioning of the table was done using
round robin resulting in a table called ill-rr ; this distributes the data among
the database servers in chunks of equal size without considering their semantic
relationship; these partitions have an extra column called clusterid.

3.2 Identifying matching Clusters

Flexible Query Answering intends to return those terms belonging to the same
cluster as the query term as informative answers. Before being able to return the
related terms, we hence have to identify the matching cluster: that is, the ID of
the cluster the head of which has the highest similarity to the query term. We
do this by consulting the similarities table and the root table. The similarities
are derived by using the Unified Medical Language System as an ontology (or
more precisely is-a hierarchy) and the similarity interface on top of it [12]. The
relaxation term t is extracted from the query and then the top-1 entry of the
similarities table is obtained when ordering the similarities in descending order:

SELECT TOP 1 root.clusterid FROM root, similarities

WHERE similarities.term=’t’ AND similarities.head = root.head

ORDER BY similarities.sim DESC

The query was tested on similarities tables of sizes 56341 entries, 14423296
entries and 72116480 entries. The runtime measurements in Figure 1 show a
decent performance of at most 125 ms impact even for the largest table size.

3.3 Query Rewriting Strategies

After having obtained the ID of the matching cluster, the original query has
to be rewritten in order to consider all the related terms as valid answers. We
tested and compared three query rewriting procedures:



8

0

20

40

60

80

100

120

140

56341 14423296 72116480

F
in

d
 m

a
tc

h
in

g
 c

lu
st

e
r 

(m
s)

Number of records

Fig. 1. Identify matching cluster

– lookup table: the first rewriting approach uses the lookup table to retrieve
the tuple IDs of the corresponding rows and executes a JOIN on table ill.

– extra clusterid column: the next approach relies on the round robin table and
retrieves all relevant tuples based on a selection predicate on the clusterid
column.

– clustered partitioning: the last rewriting approach replaces the occurrences
of the ill table by the corresponding ill-i table for clusterid i.

Assume the user sends a query
SELECT mesh,concept,patientid,tupleid

FROM ill WHERE mesh =’cough’.
and 101 is the ID of the cluster containing cough. In the first strategy (lookup
table) the rewritten query is

SELECT mesh,concept,patientid,tupleid FROM ill JOIN lookup

ON (lookup.tupleid = ill.tupleid AND lookup.clusterid=101).
In the second strategy (extra clusterid column) the rewritten query is

SELECT mesh,concept,patientid,tupleid

FROM ill-rr WHERE clusterid=101

In the third strategy (clustered partitioning), the rewritten query is
SELECT mesh,concept,patientid,tupleid FROM ill-101

In the small ill table with 56341 entries, 90 related answers are obtained,
in the medium-sized ill table with 1802912 entries, 2880 related answers are
obtained and in the large ill table with 14423296 entries, 23040 related answers
are obtained. The runtime measurements in Figure 2 in particular show that the
lookup table approach does not scale with increasing data set size.

4 Query Answering with Derived Partitions

While the evaluation of a selection query on a single table shows a similar per-
formance for all rewriting strategies, the evaluations of queries on two tables



9

0

50

100

150

200

250

300

56341 1802912 14423296

R
e

tu
rn

 e
n

ti
re

 c
lu

st
e

r 
(m

s)

Number of records

lookup table

extra clusterid

clustering

Fig. 2. Return entire cluster as related answers

using a distributed JOIN show a performance impact for the first two strategies
when the secondary table is large. We tested a JOIN on the patient ID with a
secondary table called info having a column address. The original query is

SELECT a.mesh,a.concept,a.patientid,a.tupleid,b.address

FROM ill AS a,info AS b

WHERE mesh=’cough’ AND b.patientid= a.patientid

We devised two test runs: test run one uses a small secondary table (each patient
ID occurs only once) and test run two uses a large secondary table (each patient
ID occurs 256 times). For the first rewriting strategy (lookup table) the sec-
ondary table is a non-partitioned table. For the second strategy, the secondary
table is distributed in round robin fashion, too. For the last rewriting strategy,
the secondary table is partitioned into a derived partitioning: whenever a patient
ID occurs in some partition in the ill-i table, then the corresponding tuples in
the secondary table are stored in a partition info-i on the same server as the
primary partition.

In the first strategy (lookup table) the rewritten query is
SELECT a.mesh,a.concept,a.patientid,a.tupleid,b.address

FROM ill AS a,info AS b,lookup WHERE lookup.tupleid=a.tupleid

AND lookup.clusterid=101 AND b.patientid= a.patientid.
In the second strategy (extra clusterid column) the rewritten query is

SELECT a.mesh,a.concept,a.patientid,a.tupleid,b.address

FROM ill-rr AS a,info-rr AS b

WHERE a.clusterid=101 AND b.patientid=a.patientid.
In the third strategy (clustered partitioning), the rewritten query is

SELECT a.mesh,a.concept,a.patientid,a.tupleid,b.address

FROM ill-101 AS a JOIN info-101 AS b

ON (a.patientid=b.patientid).
As Figure 3 shows, a small secondary table does not make much of a difference

when executing the join operation (one matching tuple in the secondary table
for each tuple in the primary table). However, for the larger secondary table (256



10

0

50

100

150

200

250

300

350

56341 1802912 14423296

S
m

a
ll

 s
e

co
n

d
a

ry
 t

a
b

le
 (

m
s)

Number of records

lookup table

extra clusterid

clustering

0

5000

10000

15000

20000

25000

56341 1802912 14423296

La
rg

e
 s

e
co

n
d

a
ry

 t
a

b
le

 (
m

s)

Number of records

lookup table

extra clusterid

clustering

Fig. 3. Join on small and large secondary table

matching tuples in the secondary table for each tuple in the primary table), the
impact of the lookup table access is huge in the case of the largest ill table.

5 Insertions

We tested the update behavior for all three rewriting strategies by inserting 117
new rows (one for each cluster). Any insertion requires identifying the matching
cluster i again (see Section 3.2). Each insertion query looks like this for mesh
term m, concept c, patientid 1 and tupleid 1:

INSERT INTO ill VALUES (’m’,’c’,1,1).
In the first rewriting strategy, the lookup table has to be updated, too, so that
two insertion queries are executed:

INSERT INTO ill VALUES (’m’,’c’,1,1).
INSERT INTO lookup VALUES (i,1).

For the second rewriting strategy, the extra clusterid column contains the iden-
tified cluster i:

INSERT INTO ill-rr VALUES (’m’,’c’,1,1,i).
For the third rewriting strategy, the matching clustered partition is updated:

INSERT INTO ill-i VALUES (’m’,’c’,1,1).
As shown in Figure 4, we only tested insertions for the largest table. Here

the lookup table approach has a huge runtime impact due to the maintenance
of the lookup table entries.

6 Deletions

After the insertions we made a similar test by deleting the newly added tuples
by issuing the query

DELETE FROM ill WHERE mesh=’m’.
In the first rewriting strategy, the corresponding row in the lookup table has to



11

0

5000

10000

15000

20000

25000

30000

Insertion Deletion

In
se

rt
io

n
 a

n
d

 d
e

le
ti

o
n

 (
m

s)

14423296 records

lookup table

extra clusterid

clustering

Fig. 4. Inserting one tuple into each cluster

be deleted, too, so that now first the corresponding tuple id of the to-be-deleted
row has to be obtained and then two deletion queries are executed:

DELETE FROM lookup WHERE lookup.tupleid

IN (SELECT ill.tupleid FROM ill WHERE mesh=’m’).
DELETE FROM ill WHERE mesh=’m’

For the second rewriting strategy, no modification is necessary apart from re-
placing the table name and no clusterid is needed:

DELETE FROM ill-rr WHERE mesh=’m’

For the third rewriting strategy, the matching clustered partition i is accessed
which has to be identified first (as in Section 3.2):

DELETE FROM ill-i WHERE mesh=’m’

As shown in Figure 4, we only tested deletions for the largest table, where
the time needed to identify the matching cluster is negligible. Even the round
robin approach with extra clusterid does not perform well on this large data set.

7 Recovery

Lastly, we tested how long it takes to recover the clustered partitioning by either
using the lookup table or the extra column ID. The recovery procedure was
executed first on the original table and the lookup table by running for each
cluster i:

INSERT INTO ci SELECT * FROM ill JOIN lookup

ON (lookup.tupleid=ill.tupleid) WHERE lookup.clusterid=i
for each cluster i. Then, the recovery procedure was executed on the round robin
partitioned table with the extra clusterid column for each cluster i:

INSERT INTO ci SELECT * FROM ill-rr WHERE clusterid=i

While for the smallest and the largest table the two approaches perform
nearly identically, for the medium-sized table the extra cluster id approach offers
some benefit.



12

0

10000

20000

30000

40000

50000

60000

70000

80000

56341 1802912 14423296
R

e
co

v
e

ry
 (

m
s)

lookup table

extra clusterid

Fig. 5. Recovering the clustered partitioning

8 Related Work

We divide the related work survey into approaches for flexible query answering
and approaches for data partitioning and replication.

8.1 Flexible Query Answering

The area of flexible query answering (sometimes also called cooperative query an-
swering) has been studied extensively for single server systems. Some approaches
have used taxonomies or ontologies for flexible query answering but did not con-
sider their application for distributed storage of data: CoBase [1] used a type
abstraction hierarchy to generalize values; Shin et al [18] use some specific notion
of metric distance in a knowledge abstraction hierarchy to identify semantically
related answers; Halder and Cortesi [5] define a partial order between coop-
erative answers based on their abstract interpretation framework; Muslea [14]
discusses the relaxation of queries in disjunctive normal form. Ontology-based
query relaxation has also been studied for non-relational data (like XML data in
[7] or RDF data in [3]). Another form of query relaxation requires user input in
an interactive query relaxation process [9, 10] or analyse query relaxation based
on a taxonomy with Bayesian Decision Theory [15].

All these approaches address query relaxation at runtime while answering
the query. This is usually prohibitively expensive. In contrast, our approach
precomputes the clustering and partitioning so that query answering does not
incur a performance penalty. However user interaction might be needed during
the clustering process in case some assigments of terms to clusters are ambiguous.

8.2 Data partitioning and Replication

There are some approaches for fine-grained partitioning and replication on ob-
ject/tuple level; however none of these approaches support the flexible query an-



13

swering application aimed at in this paper. In contrast they are mostly workload-
driven and try to optimize the locality of data that are covered in the same query.
They only support exact query answering. In contrast to this, we do not consider
workloads but a generic clustering approach that can work with arbitrary work-
loads providing the feature of flexible query answering by finding semantically
related answers. Our results in this paper also show that the fine-grained lookup
table approach – when applied to flexible query answering – is inherently slow
due to the large amounts of JOIN operations and so it does not scale well even
if lookup tables are replicated on all servers.

[2] represent database tuples as nodes in a graph. They assume a given trans-
action workload and add hyperedges to the graph between those nodes that are
accessed by the same transactions. By using a standard graph partitioning al-
gorithm, they find a database partitioning that minimizes the number of cut
hyperedges. In a second phase, they use a machine learning classifier to derive a
range-based partitioning. Then they make an experimental comparison between
the graph-based, the range-based, a hash-based partitioning on tuple keys and
full replication. Lastly, they also compare three different kinds of lookup tables
to map tuple identifier to the corresponding partition: indexes, bit arrays and
Bloom filters. Similar to them, we apply lookup tables to locate the replicated
data; however we apply this to larger partitions and not to individual tuples.

[16] also model the partitioning problem as minimizing cuts of hyperedges
in a graph; for efficiency reasons, their algorithm works on a compressed repre-
sentation of the hypergraph which results in groups of tuples. In particular, the
authors criticize the fine-grained (tuple-wise) approach in [2] to be impractical
for large number of tuples which is similar to our approach. The authors propose
mechanisms to handle changes in the workload and compare their approach to
random and tuple-level partitioning.

[19] assume three existing partitionings: hash-based, range-based and lookup
tables for individual keys and compare those in terms of communication cost and
throughput. For an efficient management of lookup tables, they experimented
with different compression techniques. In particular they argue that for hash-
based partitioning, the query decomposition step is a bottleneck. While we apply
the notion of lookup tables, too, the authors do not discuss how the partitions
are obtained, whereas we propose a ontology-driven partitioning approach here.

There is also related work on specifying resource management problems as
optimization problems. An adaptive solution for data replication using a genetic
algorithm is presented in [11]; they focus on fine-grained geo-replication for indi-
vidual objects. They include an assumed number of reads and writes for each site
as well as communication costs between sites. They reduce their problem to the
Knapsack problem; they also consider transfer cost of replicas between servers.
Load shedding in complex event processing systems is treated in [6]. Virtual
machine placement is a very recent topic in cloud computing [17, 4]. However,
these specifications do not address the problem of overlapping resources as we
need for the flexible query answering approach in this article.



14

9 Conclusion and future work

We presented an ontology-driven partitioning approach for the application of
flexible query answering that finds related answers to a user query. We evaluated
its performance on a distributed in-memory store. Due to the small size of the
partitioned tables, the runtime performance is best for the clustered partitioning
approach and the overhead of metadata management is negligible. It outperforms
the lookup table approach that stores for each cluster the corresponding tuple
IDs does not scale well as the data set size grows. In addition, the ontology-
driven partitioning enables fine-grained load balancing and data locality: less
servers have to be accessed when answering queries or updating tables. The idea
of data locality can even be carried further by considering cluster affinity: if two
clusters are accessed together frequently, their corresponding partitions can be
placed on the same server. So far we did not address the dynamic adaptation of
the clustering: whenever values are inserted or deleted, the clustering procedure
on the entire data set might lead to different clusters. A particular problem that
must be handled is the deletion of the head of a cluster: a new cluster head must
be chosen before the current head can be deleted; in the simplest case, the term
that is most similar to the previous head is chosen as the new head. Similarly,
deletions and insertions lead to shrinking or growing partitions. Hence in some
situation it might be useful to merge two smaller partitions that are semantically
close to each other: we can merge two partitions when their heads are sufficiently
similar to each other; or to repartition a larger partition into subpartitions based
on a clustering of values of the relaxation attribute in the partition.

9.1 Acknowledgments

The author gratefully acknowledges that the infrastructure and SAP HANA
installation for the test runs was provided by the Future SOC Lab of Hasso
Plattner Institute (HPI), Potsdam.

References

1. Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: CoBase:
A scalable and extensible cooperative information system. JIIS 6(2/3), 223–259
(1996)

2. Curino, C., Zhang, Y., Jones, E.P.C., Madden, S.: Schism: a workload-driven ap-
proach to database replication and partitioning. Proceedings of the VLDB Endow-
ment 3(1), 48–57 (2010)

3. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Cooperative techniques for sparql
query relaxation in rdf databases. In: The Semantic Web. Latest Advances and
New Domains, pp. 237–252. Springer (2015)

4. Goudarzi, H., Pedram, M.: Energy-efficient virtual machine replication and place-
ment in a cloud computing system. In: IEEE 5th International Conference on Cloud
Computing (CLOUD). pp. 750–757. IEEE (2012)



15

5. Halder, R., Cortesi, A.: Cooperative query answering by abstract interpretation.
In: SOFSEM2011. LNCS, vol. 6543, pp. 284–296. Springer, Berlin/Heidelberg, Ger-
many (2011)

6. He, Y., Barman, S., Naughton, J.F.: On load shedding in complex event processing.
In: 17th International Conference on Database Theory (ICDT). pp. 213–224 (2014)

7. Hill, J., Torson, J., Guo, B., Chen, Z.: Toward ontology-guided knowledge-driven
xml query relaxation. In: Computational Intelligence, Modelling and Simulation
(CIMSiM). pp. 448–453 (2010)

8. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Flexible Query Answering Systems. pp. 1–12. Springer (2011)

9. Jannach, D.: Fast computation of query relaxations for knowledge-based recom-
menders. AI Communications 22(4), 235–248 (2009)

10. Kumaran, G., Allan, J.: Selective user interaction. In: Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management. pp.
923–926. ACM (2007)

11. Loukopoulos, T., Ahmad, I.: Static and adaptive distributed data replication using
genetic algorithms. Journal of Parallel and Distributed Computing 64(11), 1270–
1285 (2004)

12. McInnes, B.T., Pedersen, T., Pakhomov, S.V.S., Liu, Y., Melton-Meaux, G.:
Umls::similarity: Measuring the relatedness and similarity of biomedical concepts.
In: Vanderwende, L., III, H.D., Kirchhoff, K. (eds.) Human Language Technologies:
Conference of the North American Chapter of the Association of Computational
Linguistics. pp. 28–31. The Association for Computational Linguistics, Strouds-
burg, PA, USA (2013)

13. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intel-
ligence 20(2), 111–161 (1983)

14. Muslea, I.: Machine learning for online query relaxation. In: Knowledge discovery
and data mining (KDD). pp. 246–255. ACM, New York, NY, USA (2004)

15. Pfuhl, M., Alpar, P.: Improving database retrieval on the web through query re-
laxation. In: Business Information Systems Workshops. pp. 17–27. Springer (2009)

16. Quamar, A., Kumar, K.A., Deshpande, A.: Sword: scalable workload-aware data
placement for transactional workloads. In: Guerrini, G., Paton, N.W. (eds.) Joint
2013 EDBT/ICDT Conferences. pp. 430–441. ACM, New York, NY, USA (2013)

17. Shi, W., Hong, B.: Towards profitable virtual machine placement in the data center.
In: Fourth IEEE International Conference on Utility and Cloud Computing (UCC).
pp. 138–145. IEEE (2011)

18. Shin, M.K., Huh, S.Y., Lee, W.: Providing ranked cooperative query answers using
the metricized knowledge abstraction hierarchy. Expert Systems with Applications
32(2), 469–484 (2007)

19. Tatarowicz, A., Curino, C., Jones, E.P.C., Madden, S.: Lookup tables: Fine-grained
partitioning for distributed databases. In: Kementsietsidis, A., Salles, M.A.V. (eds.)
IEEE 28th International Conference on Data Engineering (ICDE 2012). pp. 102–
113. IEEE Computer Society, Washington, DC, USA (2012)

20. U.S. National Library of Medicine: Medical subject headings,
http://www.nlm.nih.gov/mesh/

21. Wiese, L.: Clustering-based fragmentation and data replication for flexible query
answering in distributed databases. Journal of Cloud Computing 3(1), 1–15 (2014)

22. Wiese, L.: Horizontal fragmentation and replication for multiple relaxation at-
tributes. In: 30th British International Conference on Databases, BICOD. Lecture
Notes in Computer Science, Springer (2015)


