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Definition

DNA sequencing is a modern technique for the precise determination of the order
of nucleotides within a DNA molecule. Using this technique a huge amount of raw
data is generated in Life Sciences.

Synonyms

Next-generation sequencing

1 Overview

Genome analyses play an important role in different applications in the Life Sci-
ences ranging from animal breeding to personalized medicine. The technological
advancements in DNA sequencing lead to vast amounts of genome data being pro-
duced and processed on a daily basis. This chapter provides an overview of the big
data challenges in the area of DNA sequencing and discusses several data manage-
ment solutions.
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Next Generation Sequencing (NGS) technologies make it possible for life scien-
tists to produce huge amounts of DNA sequence data in a short period of time [19].
Using these technologies, in recent years thousands of genomes and short DNA
sequence reads for humans, plants, animals, and microbes have been collected and
explored, which enables us to develop a deeper understanding and gain new insights
into the molecular mechanisms of different diseases including many types of cancer,
allergies or other disorders.

There is no doubt that NGS technologies bring considerable advantages in pro-
ductivity or significant reduction in cost and time. The complexity and sheer amount
of the resulting biological data sets are, however, more intricate than expected mak-
ing their analysis and handling a real challenge.

Pedersen and Bongo [16] state that off-the-shelf big data management systems
might not be appropriate for an efficient and effective management of biological
data: “Biological data differs in that it has more dimensions and noise, it is hetero-
geneous both with regards to biological content and data formats, and the statistical
analysis methods are often more complex.” This generally also applies to the spe-
cific case of DNA sequencing data. In particular, DNA data are often processed in
a data analysis pipeline (like the META-pipe [16]) where not only the raw data but
also several additional contextual metadata and provenance data are generated and
have to be maintained. The raw data produced during DNA sequencing are image
data generated by the sequencing hardware. Further DNA processing steps comprise

primary analysis: producing short DNA sequences (called reads) out of the raw
data and assigning quality scores to them;
secondary analysis: assembling several short reads guided by a reference DNA
sequence – this process is called read mapping – as well as analyzing the reads
with respect to the reference sequence by, for example, identifying single nu-
cleotide variants or deletions;
tertiary analysis: processing the genome data to achieve advanced analyses by
integrating several data sources (like multiple DNA samples, metadata, annota-
tions etc.).

1.1 Big Data Challenges

Current life sciences are more and more data-driven. In practice, this means that
data are recorded and generated in an essentially automatic way. A large portion
of life science data is taken up by DNA sequences that are for example used to
identify the genetic basis of a disease in the medical sciences or to identify (wanted
or unwanted) traits of cultivated plants or animals which are supposed to be used
in breeding programs. It is obvious that such large bodies of data can no longer be
stored and analyzed in the traditional way but can only be harnessed by advanced
data management and analysis systems.

For the years around the millennium the growth rate of computing power kept
pace with the growth rate of data output of sequencing facilities, such that then
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data analysis was feasible even with ordinary PCs. This remarkable parallelism has
ended in 2008 with the emergence of a new sequencing technology—next genera-
tion sequencing. While computing power is predicted to follow Moore’s law, that is,
roughly doubling every 24 months, the years after the advent of NGS witnessed a
decline of sequencing cost that could only be measured in orders of magnitudes as
can be seen in so-called Carlson curves [4].

The challenges that arise by this gap between accumulation of data on the one
hand and the capacities to store, analyze and interpret them in a meaningful way is
asking for new and creative, perhaps also radical, ways to deal with data. We can
distinguish two related, but distinct, aspects of this problem: (1) data storage and
accessibility and (2) data analysis in acceptable times.

2 Key Research Findings

Several ways to address the big data challenges when processing genome sequenc-
ing data have been proposed in the last decade. We briefly survey several streams of
research in the following subsections.

2.1 From data storage to data disposal

Thus far, the generally acknowledged, albeit in most cases tacit, agreement in the
life sciences was to keep all raw data for the purpose of reproducibility or also for
secondary analyses. This attitude has begun to erode in DNA sequencing projects.
First, it should be clearly defined what raw data are in sequencing projects. In its
most primitive form the sequence raw data are image files which are processed in
several steps to yield short sequence reads which in turn are assembled to transcripts,
genes or genomes. It has become generally adopted practice to consider the short se-
quence reads, together with quality scores, as raw data which can be archived in the
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra). Probably unknowingly
data scientists and analysts have adopted the plant breeders’ wisdom: “Breeding is
the art of throwing away” transforming it into: “Managing data is the art of throwing
away” [1].

2.2 Sophisticated algorithms for data analysis

A PUBMED search has revealed a strong increase in scientific articles dealing with
ultrafast algorithms suggesting that this is the response to the emergence of big data
(Fig. 1). The speed of data processing in DNA sequence analysis can be increased
by a combination of several factors, like storing sequence data in data structures
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Fig. 1 Articles on ultrafast algorithms in pubmed

that permit rapid access (e. g. hash tables or suffix arrays) and the development of
lightweight algorithms that confine themselves to steps that are absolutely necessary.
For instance, the quantification of gene expression based upon transcriptome data
could be accelerated by an order of magnitude thanks to so called quasi-alignments.
In short, it is determined via a quasi-alignment if a short sequence read and a given
gene sequence match without the explicit calculation of a nucleotide-by-nucleotide
alignment extending over the full length of the short read sequence. This is simply
not needed for the purpose of expression quantification [15].
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2.3 DNA-specific compression

Due to its string nature, specialized encodings of genomic data can significantly re-
duce the storage consumption – either with or without loss of accuracy. In particular,
the mappings of several short DNA reads to a longer reference genome string of-
fers benefits in terms of compressed data representation. Various lossless and lossy
compression methods were devised and implemented to boil down the disk require-
ments. Accepting limited data losses, a compression by two orders of magnitude
has turned out to be feasible [17]. An even higher compression could be reached by
so-called delta encoding [5].

Such kinds of compression have been incorporated into standardized file formats
for genome representation. The Sequence Alignment/Map (SAM) format stores the
start position of a short read with respect to the reference genome, the read’s actual
sequence and a CIGAR string denoting the differences between the short read se-
quence and the reference genome, thus representing a significant reduction in disk
space requirement. The lossy CRAM file format applies a heavy-weight compres-
sion scheme and thus reduces the storage consumption even more [2].

Departing from the idea of processing data stored in flat files, integrating genome-
specific compression into a database system which holds data in the main memory
was developed in [7]. In this so-called base-centric encoding each base is stored in a
separate row of a database table such that database-specific operations can be used
to analyse the genome sequence. This technique requires that the entire genome
dataset fit into the main memory.

2.4 Parallel processing and modern hardware support

The accurate and fast detection of genomic variants like DNA insertions/deletions or
single nucleotide polymorphisms (SNPs) based on NGS data play an essential role
in clinical researches. For this aim, several analysis pipelines combining short read
aligners (e.g., BWA-MEM, Bowtie2, SOAP3 and Novoalign (http://novocraft.com/))
with variant callers (e.g., the Genome Analysis Tool Kit HaplotypeCaller (GATK-
HC), Samtools mpileup, and Torrent Variant Caller (v4.0 Life Technologies)) have
been developed. However, the analysis of the raw sequence data is computation-
ally intensive and requires significant memory consumption. In order to deal with
this problem, most aligners and variant callers have been implemented in multi-
threaded mode (e.g., BWA-MEM, Bowtie2, and Novoalign) or using GPU-based
software (SOAP3) to ensure a feasible computation time. For details like memory
usage or multi-threading of the different approaches see the review [13]; also see
the references therein for details about the different tools mentioned above.

Thus parallelization of analysis tasks is as important as the sequencing process
itself and promises a huge potential for DNA processing. Several frameworks aimed
at parallelization for specific applications. The map reduce paradigm has hence re-
ceived a lot of attraction. [12] describe a distributed framework for read mapping



6 Lena Wiese, Armin O. Schmitt, and Mehmet Gültas

based on the message passing interface (MPI) in a cluster of nodes. They discuss
the issues of splitting and distributing the inputs as well as merging the results.
Already in the year 2010 an overview [20] surveyed applications of the Hadoop
framework; more recently, other approaches based on the MapReduce framework
have been developed [6]. Other distributed processing systems like Spark have also
received attention for applications in genome sequencing and processing [14].

To benefit from advances of modern hardware technology, some DNA analysis
processes have been ported to run on graphical processing units (GPUs) [18]. How-
ever, these approaches incur an overhead for preprocessing the data and require
highly specialized algorithms in order to take advantage of the GPU platforms.

2.5 Integration of Heterogeneous Data

Considering the growth rate of DNA sequencing data, Stephens et al. have demon-
strated in their study [19] that the sequencing technologies are one of the most im-
portant generators of big data. However, these massive datasets are often neither
well-structured nor organized in any consistent manner which makes their direct
usage difficult. Consequently, the researchers have, first of all, to deal with the han-
dling of big data to perform any analysis or comparison studies between different
genomes. Thus, an effort for these big data challenges in life sciences is needed
today to store the data in hierarchical systems with more efficient ways that make
them available at different levels of analysis.

Management of biological data often requires the connection and integration of
different data sources for a combined analysis. By default, biomedical text formats
use identifiers (for example for genes or genomic variants) and different text files
can only be combined by ID-based linking: data combination heavily relies on string
equality matching over these IDs. To exacerbate the situation, these IDs are often
hidden in larger strings such that these IDs have to be extracted first before data
can be joined. A conjecture shared by many researches in the field is that, on the
high-level of data management, explicitly linking data items in a graph structure by
navigational access will enable more efficient data combination than join operations
over string IDs. Hence, graph databases are deemed to be most suitable for such a
data integration layer [9] because different data sources can be combined by a link
(edge) in the data graph.

One prototypical framework that integrates genome data sources and other bio-
logical data sets in a common graph-based framework is the BioGraphDB presented
by Fiannaca et al [8] who use the OrientDB multi-model database to interconnect
several text-based external data sources. The BioGraphDB system is able to process
queries in the Gremlin graph query language. Textual input data is processed in this
framework as follows [8]: “As general rule, each biological entity and its properties
have been mapped respectively into a vertex and its attributes, and each relation-
ship between two biological entities has been mapped into an edge. If a relationship
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has some properties, they are also saved as edge attributes. Vertices and edges are
grouped into classes, according to the nature of the entities.”

3 Examples of Application

The raw sequencing reads are often stored in public genome repositories like:

• National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov),
• ENCODE (https://www.encodeproject.org/),
• Genome 10K Project (https://genome10k.soe.ucsc.edu),
• TCGA (https://cancergenome.nih.gov),
• Human Microbiome Project (https://hmpdacc.org/)

in order to make these large bodies of research data easily accessible. We survey
some of these repositories with a focus on bioinformatics applications.

3.1 Bioinformatics for Sequencing Data

Bioinformatics skills play an essential role in the exploitation of the full potential
of NGS data. Until now, different bioinformatics tools and algorithms have been
published for the storage and computational analysis of DNA sequences. Such ap-
plications are important for the detection as well as the understanding of relevant
biological processes. Currently, in the OmicTools directory (https://omictools.com/)
for NGS data analysis there are 47 categories with 9089 applications which are de-
veloped, for example, for data processing, quality control, genomic research, data
visualization or for the identification of robust genomic associations/variants with
complex diseases.

In addition to computational analysis of sequencing data, the field of bioinformat-
ics is crucial for storage of large-scale sequencing data in databases as well as repos-
itories. The Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) is
one of the most relevant public-domain repositories in which raw sequence data
generated using next generation sequencing technologies are stored for free and
continuous access to the data is possible. There are further big data projects that are
based on databases/repositories collecting sequencing data in life sciences:

The Encyclopedia of DNA elements (ENCODE) stores more than 15 terabytes
of raw data and is thus one of the most general databases for basic biology re-
search.
The Cancer Genome Atlas (TCGA) is an extensive effort to map the key ge-
nomic changes in 33 types of cancer. This database contains to date 2.5 petabytes
of data collected from more than 11,000 patients.
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The Genome 10K Project is a collection for storage and analysis of the sequenc-
ing data corresponding to 10,000 vertebrate species. Scientists expect more than
1 petabyte by completion.
Human Microbiome Project is a collection of several databases to provide
quick and easy access of all publicly available microbiome data. Currently, the
database contains over 14 terabytes of publicly available data in total.

4 Future Directions for Research

DNA sequencing is one of the major producers of Big Data. Novel sequencing tech-
nology will even increase the amount of DNA sequencing data produced. The in-
troduction of mobile sequencing devices (like nanopore-based technologies [11])
will turn DNA-sequencing into an everyday diagnosis and monitoring tool. Though
initially the available devices suffered from high error rates, ongoing technological
advances will lead to an improved data quality [10].

It might be worthwhile to closely inspect genome data processing pipelines in
order to identify bottlenecks. [12] report on the use of high-performance profiling
that revealed idling hardware resources. By improving the task scheduling, a better
runtime could be achieved. This kind of low-level performance optimization is one
field of future research to improve performance of DNA processing.

Extrapolating the current drop in sequencing cost, the most radical option could
be so-called streaming algorithms for sequence analysis. With streaming algorithms,
DNA sequences are analyzed in real-time and are not stored at all, as shown in [3].
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