
On the Hardness of Separation of Duties
Problems for Cloud Databases

Ferdinand Bollwein and Lena Wiese

1 Institute of Applied Stochastics and Operations Research, TU Clausthal
ferdinand.bollwein@tu-clausthal.de

2 Institute of Computer Science, University of Göttingen
wiese@cs.uni-goettingen.de

Abstract. Using cloud databases puts confidential data at risk. We ap-
ply vertical fragmentation of data tables in order to obtain insensitive
data fragments. These fragments can then be hosted in databases at dif-
ferent cloud providers. Under the assumption that the cloud providers do
not communicate, we then obtain a separation of duties such that each
provider is unable to recombine the original confidential data set. In this
paper, we view this separation of duties as an optimization problem.
We show that it is a combination of the two famous NP-hard problems
bin packing and vertex coloring. We analyze the complexity of the prob-
lem in the standard case (when only confidentiality is required) and the
extended case (when also utility is a requirement).

1 Introduction

Cloud databases are a convenient solution for solving data management prob-
lems. However, when outsourcing data to a cloud service, the users (the so-called
data owners) transfer the control of the data to the cloud service provider. The
here presented separation of duties approach aims at protecting confidential-
ity of data stored in cloud databases. Consistent with [1] and [8] cloud service
providers are assumed to be honest-but-curios: the cloud database servers an-
swer queries correctly and do not manipulate the stored data – but they try to
analyze the data and the queries in order to gain as much information as possible
from them. Our work is based on the so-called keep-a-few approach which was
introduced in [8]; we extend this basic approach in several ways – in particular,
by allowing more than one external server. Like in [1], we assume that cloud
service providers are non-communicating – otherwise servers could collaborate
to reestablish sensitive information from their insensitive portions of data. The
non-communication assumption can be avoided by encrypting tuple identifiers
or replacing them by different placeholders in every fragment.

The separation of duties approach is based on the assumption that often the
association of data is sensitive, while individual values are insensitive; under this
assumption confidentiality can be protected by distributing the data among mul-
tiple servers and thereby breaking these associations. However, there is of course
the possibility that certain values themselves are too sensitive to be exposed to



2

a cloud database provider. For this problem, there are basically two possible
solutions. Either the sensitive values are encrypted before storing them in the
cloud database – or the sensitive data are not outsourced at all and instead
stored locally at the user’s site (called the owner site). While the encryption
approach is certainly more beneficial for the user from the storage consump-
tion point of view (no local storage at the owner site is needed), there is only
a limited possibility to perform queries on the encrypted data; encryption also
involves a non-negligible overhead when encrypting and decrypting the data. A
comparison of property-preserving encryption schemes (that support sorting and
range queries on encrypted data as well as searching for encrypted keywords) is
given in [21] including an assessment of the encryption overhead.

We want to emphasize the point that we are addressing the problem of out-
sourcing data storage into the cloud so that the data have to retain their original
quality and accuracy. This is opposed to data publishing approaches, that – in
order to achieve privacy-preserving statistical evaluations – distort or modify
data so that the original data set is not recoverable without additional meta-
data that could undo the distortion or modification. Prominent approaches that
include data distortion are k-anonymity [19, 20] and differential privacy [14].

To summarize our contributions, we use vertical fragmentation as a technique
to protect data confidentiality from honest-but-curious cloud database servers.
Consistent with related work, the confidentiality requirements are modeled as
subsets of columns of the individual relations – the so-called confidentiality con-
straints. The resulting fragments are linkable by a common attribute but it is
assumed that they are stored on separate non-communicating servers. The prob-
lem of finding such fragmentations is modeled as a mathematical optimization
problem and it is one of the main objectives to minimize the number of involved
servers. In this paper we extend the work in [5, 4]: we analyze the theoretical
complexity of the standard separation of duties problem (that enforces confi-
dentiality constraints) by polynomial reduction of the NP-hard problem vertex
coloring. Moreover, extended requirements (visibility constraints and closeness
constraints) are introduced to improve the utility of the resulting fragmenta-
tions and to enable efficient query processing. Those constraints are modeled as
soft constraints – in contrast to the confidentiality requirements. We also show
NP-hardness of this extended separation of duties problem.

Organization of the article. Related work is presented in Section 2. Section 3
introduces the main notions used in this article. Section 4 analyzes the standard
variant of separation of duties under confidentiality constraints. Section 5 treats
the more involved case of visibility as well as closeness constraints to enforce
data locality for more performance of distributed query answering. Section 6
concludes this article with suggestions for future work.

2 Related Work

The major component of our separation of duties approach is the concept of
vertical fragmentation. This concept is part of many standard textbooks like



3

[18]. Basically, the term vertical fragmentation refers to the process of dividing
a relation (see Section 3.1 for a formal definition of the relational data model)
into smaller units called (relation) fragments. Usually, as described in [18], this
is done to speed up database systems. In related work, several approaches ap-
ply vertical fragmentation and consider attribute affinity in a given workload
of transactions as an optimization measure. A recent comparative evaluation
of vertical fragmentation approaches is provided in [17]; however all of these
approaches do not consider fragmentation as a security mechanism.

In this paper, we apply vertical fragmentation as a powerful technique to
set up a confidentiality-preserving cloud database environment. Two approaches
can be seen as starting points for using vertical fragmentation to achieve confi-
dentiality in distributed databases:

– The “two can keep a secret” approach [1] considers distribution of a sin-
gle table between two database servers and leverages encryption whenever
necessary to maintain confidentiality of data stored at the external servers.

– The “keep a few” approach [8] ensures confidentiality by storing highly con-
fidential data at the owner site (in a so-called “owner fragment”) and only
outsourcing the remaining data to an external server.

Several extensions have spawned off these two basic approaches covering
different extensions like visibility constraints and dependencies [6, 7, 9–13, 2]. In
particular, in [8, 13] Hypergraph Coloring is applied to show hardness of the
underlying problems. We complement these approaches by explicitly allowing
more than two external servers. We formalize this as an optimization problem
such that the amount of necessary cloud database providers is minimized. In our
problem formulation visibility and confidentiality constraints may be in conflict
(a problem that we solve by treating visibility constraints as soft constraints) –
and we additionally consider closeness constraints (that improve data locality).

In general our approach is applicable to databases with multiple relations;
this setting was formalized in [5]. Unlike [3] where inter-table constraints involv-
ing two relations require that no combination of attributes from these relations
are stored in the same fragment, we model confidentiality constraints as sub-
sets of the whole set of attributes from all relations of the database. With this
approach the inter-table constraints from [3] can be modeled as pairwise con-
fidentiality constraints for the attributes of the involved relations but it also
allows modeling more fine-grained confidentiality concerns.

3 Background and example

3.1 Relational Data Model

This work uses the notations of the relational database model which was first
introduced by Codd in 1970 [15] and has become one of the most commonly
used models in the context of databases. The main concept in the relational
model is the notion of a relation schema. A relation schema R (a1, . . . , an), con-
sists of a relation name R and a finite set of attributes {a1, . . . , an} with n ≥ 1.



4

Each attribute ai is associated with a specific domain of possible values which
is accounted for by the expression dom(ai). Next, a relation (instance) r on
the relation schema R (a1, . . . , an), also denoted by r(R), is defined as an or-
dered set of n-tuples r = (t1, . . . , tm) such that each tuple tj is an ordered list
tj = 〈v1, . . . , vn〉 of values vi ∈ dom(ai) or vi = NULL. The NULL value is a spe-
cial constant which is used whenever a certain value of the attribute is unknown
or does not apply for a certain tuple. For sake of simplicity we only discuss the
theory of Separation of Duties in the context of a single relation r on schema
R(A) for a set A of attributes. Lastly, two relational operations are introduced.
Let r = (t1, . . . , tm) denote a relation over the relation schema R(A). The pro-
jection πf (r) for any f ⊆ A is defined as the mapping that assigns a relation r
to the set of tuples:

πf (r) := {t1[f ], . . . , tm[f ]}.

This corresponds to the set of tuples of r restricted to the subset f ⊆ A. Projec-
tion is used to obtain the resulting relation fragments from the relation instance.
The second important operation is the equi-join. To define this operation, let
r1 and r2 denote relations over the relation schemes R1(A1) and R2(A2) re-
spectively. The cartesian product of r1 and r2 is defined as the set of tuples
r1 × r2 := {(t1, t2) | t1 ∈ r1, t2 ∈ r2}. If A′1 ⊆ A1 and A′2 ⊆ A2 denote subsets of
attributes of the relation schemes R1(A1) and R2(A2), the equi-join of r1 and
r2 on A′1 and A′2 is defined as the operator that returns the set:

r1 ./A′
1=A

′
2
r2 := {t ∈ r1 × r2 | t[A′1] = t[A′2]}

In the context of vertical fragmentation, the equi-join operation is used to recon-
struct the original relation from the obtained fragments by including common
attributes in the fragments and performing equi-joins on those attributes.

3.2 Fragmentation

When fragmenting a relation vertically, there are two main requirements. The
first property (completeness) is that every attribute must be placed in at least
one fragment. The second property (reconstruction) requires that it must be
possible to reconstruct the original relation from the fragments. This is usually
achieved by placing a set of common attributes – the tuple identifier – into every
fragment which makes it possible to link the individual tuples of each fragment.
Equi-join operations on those attributes can then be used to reconstruct the
original relation. Note that, due to the non-communicating server assumption
applied in this work, linkability of fragments is not a security issue. It is further
worth noting that the tuple identifier is required to form a proper subset of the
fragments which prohibits fragments consisting of the tuple identifier attributes
only. This requirement is due to the fact that the tuple identifier’s sole purpose
should be to ensure the reconstruction property. There is also a third property
(disjointness) which is often required. This property demands that every non-
tuple identifier attribute is placed in exactly one vertical fragment. A correct
vertical fragmentation of a single relation is formally defined as follows:



5

Definition 1 (Vertical Fragmentation, Cardinality). Let r be a relation
on the relation schema R(A). Let tid ⊂ A be the tuple identifier of r. A tuple
f = (f0, . . . , fk) where fj ⊆ A for all j ∈ {0, . . . , k} is called a correct vertical
fragmentation of r if the following conditions are met:

1. Completeness:
⋃k
j=0 fj = A

2. Reconstruction: tid ⊂ fj , if fj 6= ∅
3. Disjointness: fi ∩ fj ⊆ tid (for fi 6= fj and fi, fj 6= ∅)

The cardinality card(f) of a correct vertical fragmentation of r is defined as the

number of nonempty fragments of f as card(f) =
∑k

j=0
fj 6=∅

1. At physical level, the

relation fragment derived from fragment fj is given by the projection πfj (r).

A fragmentation that satisfies the completeness and the reconstruction but not
necessarily the disjointness property is called a lossless fragmentation of r.

3.3 Motivating Example

This section provides a motivating example to illustrate the ideas behind the
separation of duties approach. Similar to [8], a hospital environment is considered
that stores the patients’ medical records in a relation as illustrated in Table 1;
the patient identifiers (called PID) act as tuple identifiers.

PID Name DoB ZIP Diagnosis Doctor

1 J. Doe 07.01.1986 12345 Flu H. Bloggs
2 W. Lee 12.08.1974 23456 Broken Leg G. Douglas
3 F. Jones 05.09.1963 23456 Asthma H. Bloggs
4 G. Miller 10.02.1982 12345 Cough H. Bloggs

Table 1. Database table storing medical records

Clearly, storing such data in a cloud database and exposing it to the provider
violates the patients’ privacy. Hence, this is definitely not an option for the
hospital. However, it is only the association of the attributes which makes this
relation problematic. This observation encourages the idea that it is possible
to vertically divide the relation into multiple insensitive fragments which can be
distributed among different cloud databases. The hospital develops the following
confidentiality constraints to protect their patients’ identities:

– The patients’ names must not be stored in plaintext by an untrusted server.
– The date of birth and the ZIP-Code leak too much information about a

patient’s identity; they must not be stored by a single untrusted server.

A vertical fragmentation consisting of two server fragments and one owner frag-
ment is considered confidentiality-preserving by the hospital. Both server frag-



6

f0:

PID Name

1 J. Doe
2 W. Lee
3 F. Jones
4 G. Miller

f1:

PID DoB

1 07.01.1986
2 12.08.1974
3 05.09.1963
4 10.02.1982

f2:

PID ZIP Diagnosis Doctor

1 12345 Flu H. Bloggs
2 23456 Broken Leg G. Douglas
3 23456 Asthma H. Bloggs
4 12345 Cough H. Bloggs

Table 2. One owner fragment f0 and two server fragments f1 and f2

ments f1 and f2 (see Table 2) are insensitive and can therefore be placed on two
separate cloud database providers. As long as the respective database providers
are not collaborating to reestablish the sensitive associations, the confidentiality
requirements imposed by the hospital are met. Because the names of the patients
of a hospital are considered to be sensitive on their owns, fragment f0 (see, Table
2) has to be treated differently. Basically, there are two options: Encrypting the
names before outsourcing – or storing them locally in an owner fragment and
not in a cloud database. In this work, the second option is chosen: no encryption
– limiting the execution of queries involving patients’ names – is necessary.

3.4 Data Distribution as Optimization Problems

We will later on combine two different NP-hard problems to obtain our Sep-
aration of Duties problem formulation. We now introduce the two underlying
problems: Bin Packing and Vertex Coloring.

When outsourcing the data to cloud databases, it might be required that
certain capacities in terms of storage space are not exceeded – otherwise the
cloud provider could for example charge more usage fees. A famous NP-hard
problem considering capacities is Bin Packing; this well-known NP-hard problem
is for example stated in [16] (we adapt the notation to our purposes):

Definition 2 (Bin Packing). Given a set B = {b1, . . . , bk} of bins (each with
a maximum capacity Wj) and a set O = {o1, . . . , on} of objects (each with a
capacity consumption wi), find the minimum number K such that all objects in
O are placed in some bin, the set of used bins U ⊆ B is of cardinality K (that is,
|U | = K) and the capacities are not exceeded (that is, for each bj ∈ U it holds
that

∑
oi∈bj wi ≤Wj).

The data distribution problem with capacity constraints is basically a Bin
Packing Problem (BPP) in the following sense:

– k servers correspond to k bins

– each server bj has a maximum capacity Wj

– n attributes correspond to n objects

– each attribute has a capacity consumption wi
– attributes have to be placed into a minimum number of servers K without

exceeding the maximum capacities Wj



7

On the other hand (to later on ensure confidentiality) we have to express that
certain attributes should not be placed on the same server. This can be achieved
by a graph coloring problem – more precisely Vertex Coloring; this well-known
NP-hard problem is also stated in [16] (we again slightly adapt the notation):

Definition 3 (Vertex Coloring). Given an undirected graph G = (N,E) con-
sisting of nodes N = {n1, . . . , nn} and edges E ⊆ N × N with ni 6= ni′ for all
(ni, ni′) ∈ E, find the minimum number K such that there exists a K-coloring
ϕ : N −→ {1, . . . ,K} that satisfies ϕ(ni) 6= ϕ(ni′) for every edge (ni, ni′) ∈ E.

The data distribution problem with pairwise confidentiality constraints is
basically a Vertex Coloring Problem (VCP) in the following sense:

– k available servers correspond to the amount k of available colors
– n attributes correspond to n nodes
– if a confidentiality constraint requires that two attributes ai and ai′ should

be assigned to different fragments, there should be an edge (ni, ni′) ∈ E
between the two nodes ni and ni′ corresponding to the attributes; in effect,
the two nodes will be colored with two different colors which corresponds to
placing them on different servers.

– finding the minimum number K of occupied servers corresponds to finding
the minimum number of colors.

In this paper we extend these basic data distribution problems into separa-
tion of duties problems that take confidentiality constraints into account and
furthermore consider several additional optimization goals and settings. In par-
ticular, we consider the capacities and weights in the bin packing problem as one
component of our overall optimization problem while confidentiality constraints
are enforced by the constraints of the vertex coloring problem.

4 Standard Separation of Duties Problem

We now move on to the formal specification of our Separation of Duties prob-
lems. The security requirements are at attribute level, i.e. certain attributes or
combinations of attributes are considered sensitive and must not be stored by a
single untrusted database server. This can – consistently with related work [1] –
be modeled with the notion of confidentiality constraints.

Definition 4 (Confidentiality Constraints). Let R(A) be a relation schema
over the set of attributes A. A confidentiality constraint on R(A) is defined by a
subset of attributes c ⊆ A with c 6= ∅. Two types of constraints are distinguished:

– Singleton Constraint: A singleton constraint is a confidentiality constraint
c with |c| = 1. This means that the confidentiality constraint consists of a
single sensitive attribute which should not be exposed to any untrusted server.

– Association Constraint: An association constraint satisfies |c| > 1. This
means that a server is not allowed to store the combination of attributes
contained in c. However, any proper subset of c may be revealed.



8

Because attributes contained in a singleton constraint are not allowed to be
accessed by an untrusted server, they cannot be outsourced in plaintext at all.
Hence, because our approach works without encryption, those attributes have to
be stored locally at the owner site. On the other hand, association constraints can
be satisfied by distributing the respective attributes among two or more database
servers. More precisely, a correct vertical fragmentation f = (f0, . . . , fk) has to
be found in which one fragment stores all the attributes contained in singleton
constraints and all other fragments are not a superset of any confidentiality con-
straint. As a common convention throughout the rest of this work, fragment f0
will always denote the owner fragment which stores all the attributes contained
in singleton constraints. This fragment is stored by a local, trusted database.
The other fragments f1, . . . , fk denote the server fragments and each of those is
stored by a different untrusted database server. This leads to the formal defini-
tion of a confidentiality-preserving vertical fragmentation:

Definition 5 (Confidentiality-preserving Vertical Fragmentation). For
a relation r on the relation schema R(A) and a set of confidentiality constraints
C, a correct vertical fragmentation f = (f0, . . . , fk) is confidentiality-preserving
with respect to C if c * fj , for all c ∈ C and j ≥ 1.

The condition requires that no attributes contained in a confidentiality con-
straint are simultaneously stored in a server fragment and hence, exposed to an
untrusted cloud database provider. On the one hand, this ensures that no confi-
dentiality constraint is violated for any server fragment fj for j ∈ {1, . . . , k}. On
the other hand, this means that all attributes contained in singleton constraints
must be placed in the owner fragment f0.

It is necessary to introduce some reasonable restrictions to the set of confi-
dentiality constraints. These restrictions are of theoretical nature and will not
restrict its expressiveness. These requirements are summarized by the following
definition of a well-defined set of confidentiality constraints:

Definition 6 (Well-defined Set of Confidentiality Constraints). Given a
relation r on the relation schema R(A) and a designated tuple identifier tid ⊂ A.
A set of confidentiality constraints C is well-defined if it satisfies:

1. For all c, c′ ∈ C with c 6= c′, it holds that c * c′.
2. For all c ∈ C, it holds that c ∩ tid = ∅.

The first condition requires that no confidentiality constraint c is a subset of an-
other confidentiality constraint c′. By the definition of a confidentiality-preserving
vertical fragmentation, the satisfaction of c′ would be redundant because c * fj
for j ∈ {1, . . . , k} implies that c′ * fj for j ∈ {1, . . . , k} if c ⊆ c′. The second
condition requires that the tuple identifier attributes are considered insensitive:
the tuple identifier’s sole purpose is to ensure the reconstruction of the fragmen-
tation by placing it in every nonempty fragment.

Space requirements might also be an important factor for the vertically frag-
mented relation and the owner and the server fragments may not exceed certain
storage capacities. Hence, the concept of attribute weight is introduced:



9

Definition 7 (Weight Function). Let r be a relation over the relation schema
R(A) and let P(A) denote the power set of the set of attributes A. A weight
function for r is defined as a function wr : P(A) −→ R≥0 that satisfies:

– wr(f) = 0, if and only if f = ∅
– wr(f) =

∑
a∈f wr ({a}) for all f ⊆ A

To denote the weight of a single attribute a ∈ A, the notation wr(a) is used
instead of wr ({a}).

Due to the second condition such a weight function is fully defined by the values
wr(a) for all attributes a ∈ A: any subset of A is a combination of these attributes
and its weight is defined by the sum of the weights of its elements.

Keeping the number of involved server as low as possible will reduce the user’s
costs, lower the complexity of maintaining the vertically fragmented relation
and also increase the efficiency of executing queries. Therefore, in the following
problem statement, the objective is to find a confidentiality-preserving correct
vertical fragmentation of minimal cardinality. Additionally, the capacities of the
involved servers must not be exceeded.

Definition 8 (Standard Separation of Duties Problem). Given a rela-
tion r over the relation schema R(A), a well-defined set of confidentiality con-
straints C, a tuple identifier tid ⊂ A, a weight function wr, servers S0, . . . , Sk
(where S0 denotes the owner’s trusted server and S1, . . . Sk denote the untrusted
external servers) and maximum capacities W0, . . . ,Wk ∈ R≥0, find a correct
confidentiality-preserving fragmentation f = (f0, . . . , fk) of minimal cardinality
such that the capacities are not exceeded, i.e. wr(fj) ≤Wj for all 0 ≤ j ≤ k.

One should note that in this general formulation the owner fragment can pos-
sibly contain all of the attributes if W0 is sufficiently large. Yet, the purpose of
the owner fragment is to store the attributes contained in singleton constraints.
Therefore, in a variation of this problem, the capacity of the owner fragment
is chosen such that it cannot hold any attribute other than the most sensitive
ones and, of course, the tuple identifier; all other attributes are actually dis-
tributed among the server fragments. If there are singleton constraints, this can
be achieved by choosing W0 as wr(tid) +

∑
c∈C:|c|=1 wr(c).

4.1 Complexity Analysis

In this section, the complexity of the Standard Separation of Duties Problem is
analyzed. The problem can be viewed as a combination of two famous NP-hard
problems, the Bin Packing Problem due to the capacity constraints and the Ver-
tex Coloring Problem due to the confidentiality constraints. Both problems can
easily be modeled as a Separation of Duties Problem to prove NP-hardness of
the latter. In real life scenarios however, the capacity constraints might often
be less important because cloud storages can generally be enlarged on demand.
Therefore, the proof is based on the Vertex Coloring Problem. The following the-
orem is proven by a polynomial reduction of an instance of the Vertex Coloring



10

Problem to an instance of the Standard Separation of Duties Problem. For sim-
plicity, the former is denoted by VC and the latter by SSoD. The proof proceeds
by finding a fragmentation of minimal cardinality K for SSoD which can then
define a coloring for VC; lastly, we show that if K is a minimal fragmentation,
there can be no coloring for VC with K ′ < K colors.

Theorem 1. The Standard Separation of Duties Problem is NP-hard.

Proof. Let VC be defined by a graph G = (N,E) with nodes N = {n1, . . . , nk}
and edges E = {e1, . . . , em} ⊆ N ×N . Without loss of generality, it is assumed
that if E contains the edge (ni, ni′), it does not contain the equivalent edge
(ni′ , ni). Then, SSoD is defined as follows for all a ∈ A and j = 1, . . . , k:

– For every node ni ∈ N , an attribute ani
is defined. Additionally, an artificial

tuple identifier tid := {atid} is introduced. Overall, the set of attributes is
therefore defined by A := tid ∪ {ani

|ni ∈ N}.
– R(A) is a relation schema over A and r is a relation on R(A).
– The weight function wr : P(A) −→ R≥0 is defined by wr(∅) := 0, wr(a) := 1.
– There is an owner server S0 and external servers Sj for each node nj .
– The capacity of the owner’s server W0 equals zero and the servers’ capacities

are all large enough to potentially hold all the attributes, i.e. Wj := wr(A).
– For every edge (ni, ni′) ∈ E, a confidentiality constraint {ani

, ani′} ⊆ A ×
A is introduced. The set of confidentiality constraints is hence defined by
C :=

{{
ani , ani′

}
⊆ A×A | (ni, ni′) ∈ E

}
. This set is well-defined because

atid ∩ c = ∅ for all c ∈ C and it is assumed that if E contains (ni, ni′), it
does not contain (ni′ , ni) which ensures that c 6⊆ c′ for all c, c′ ∈ C.

By definition, for both instances of VC and SSoD a feasible solution exists: In
the former, there always exists a k-coloring which assigns each of the k nodes to
a different color. In the latter, the number of servers is the same as the number
of non-tuple-identifier attributes and each servers’ capacity is sufficiently large
to hold such an attribute together with the tuple identifier. Hence, the correct
vertical fragmentation f = (f0, . . . , fk) with f0 = ∅ and fj = {atid, anj

} for
j ∈ {1, . . . , k} satisfies the capacity constraints and is thus a feasible solution.
Hence, a correct privacy-preserving vertical fragmentation f = (f0, . . . , fk) of
minimal cardinality card(f) := K of SSoD can be assumed. Without loss of gen-
erality, for this fragmentation it can be assumed that f0 = ∅, f1, . . . , fK 6= ∅ for
K ≤ k and fK+1, . . . , fk = ∅ because all the servers’ capacities are the same and
hence, the server fragments can be permuted such that the fragmentation satis-
fies this property. In the definition of SSoD, every non-tuple-identifier attribute
ani ∈ A corresponds to a node ni which allows the definition of a K-coloring
ϕ : N −→ {1, . . . ,K} from that fragmentation as ϕ(ni) 7→ j, if ani ∈ fj : if the
attribute ni is contained in fragment fj ∈ f , then the color j is chosen. This
coloring is well-defined due to the disjointness and the completeness property of
f . More precisely, because each ani

is contained in exactly one server fragment
fj , each ni is assigned exactly one color j. Because the confidentiality constraints
are derived from the edges of the graph, it is not possible that attributes ani and



11

ani′ are in the same fragment if there exists an edge (ni, ni′) ∈ E. Therefore,
no adjacent nodes are assigned the same color. This coloring uses card(f) = K
colors – one for each nonempty fragment.
It remains to show that the numbers of colors used is in fact minimal. For that,
it is assumed that there exists a K ′-coloring φ of G with K ′ < K. Then, for
every color j′ ∈ {1, . . . ,K ′} in the image of φ, define the set f ′j′ as follows:

f ′j′ := {ani ∈ A |ni ∈ N and φ(ni) = j′} ∪ tid

Additionally, f ′0 := ∅ and f ′K′+1, . . . , f
′
k := ∅ is defined. Then, f ′ = (f ′0, . . . , f

′
k)

forms a confidentiality-preserving correct vertical fragmentation of cardinality
K ′: Every node ni is assigned exactly one color j′ ∈ {1, . . . ,K ′} and hence,
every attribute ani is contained in exactly one fragment, namely fj′ . Thus, f ′

satisfies the completeness and the disjointness property. Additionally, as the
tuple identifier is included in every nonempty fragment, those fragments form a
correct vertical fragmentation of r. The confidentiality constraints of SSoD are
derived from the edges of G and therefore, there is a confidentiality constraint
{ani

, ani′} if (ni, ni′) ∈ E. Moreover, the coloring satisfies φ(ni) 6= φ(ni′) if
(ni, ni′) ∈ E which means that attributes ani and ani′ are placed in different
fragments and therefore, the corresponding confidentiality constraint is satisfied.
This proves that the fragmentation is indeed confidentiality-preserving. This,
however, contradicts the assumption that the cardinality K of f is minimal. This
means, that the previously defined coloring ϕ is in fact minimal and a solution
to the vertex coloring problem which concludes the proof of the theorem.

5 Extended Separation of Duties Problem

While the problem formulation for the Standard Separation of Duties Problem is
suitable to preserve confidentiality, several enhancements will now be presented
to make it applicable for practical purposes. These enhancements are mainly
concerned with the distribution of the attributes to allow efficient query pro-
cessing. In many scenarios, it is desirable that certain combinations of attributes
are stored by a single server or in other words, these combinations are visible on
a single server, because they are often queried together. This can be accounted
for with the notion of visibility constraints:

Definition 9 (Visibility Constraint). Let R(A) denote a relation schema
over the set of attributes A and let r be a relation over R(A). A visibility
constraint over R(A) is a subset of attributes v ⊆ A. A fragmentation f =
(f0, . . . , fk) satisfies v if there exists 0 ≤ j ≤ k such that v ⊆ fj. In this case,
define satv(f) := 1 and satv(f) := 0 otherwise. Furthermore, for any set V of
visibility constraints define satV (f) :=

∑
v∈V satv(f) to count the number of sat-

isfied visibility constraints.

In contrast to confidentiality constraints, the fulfillment of visibility constraints is
not mandatory, i.e. confidentiality constraints are hard constraints while visibil-
ity constraints are soft constraints. While we require the resulting fragmentation



12

to satisfy the completeness property, breaking the disjointness property can help
increase the number of satisfied visibility constraints. Hence, in the upcoming
problem definition only a lossless fragmentation will be required.

In case a visibility constraint cannot be satisfied (because otherwise a confi-
dentiality constraint will be violated), the distribution of the visibility constraint
attributes is arbitrary.

Therefore, it is reasonable to provide constraints to ensure that certain at-
tributes be distributed among as few servers as possible. Moreover, as in the
following problem statement a lossless fragmentation will be required, those
constraints can also be used to limit the number of copies of any individual
attribute. We introduced so-called closeness constraints in [4]:

Definition 10 (Closeness Constraint [4]). Let r be a relation over relation
schema R(A). A closeness constraint over R(A) is a subset of attributes γ ⊆
A. Let f = (f0, . . . , fk) be a correct/lossless vertical fragmentation of r, the
distribution distγ(f) of γ is defined as the number of fragments that contain one
of the attributes in γ: distγ(f) :=

∑
fj∩γ 6=∅ 1 (for j = 0 . . . k). Moreover, for any

set Γ of closeness constraints, the distribution distΓ (f) is defined as the sum of
distributions of γ ∈ Γ : distΓ (f) :=

∑
γ∈Γ distγ(f).

The minimization of the distribution of the closeness constraints is the third goal
in the following problem formulation. However, minimizing the cardinality of
the fragmentation, maximizing the number of satisfied visibility constraints and
minimizing the distribution of the closeness constraints are three separate, non-
complementary goals. Hence, a balance has to be found between them. Therefore,
the objective stated in the problem definition is expressed as a weighted sum of
these three goals using weights α1 (for the cardinality), α2 (for visibility) and
α3 (for closeness). Note that satisfying the confidentiality constraints is still
mandatory. The Extended Separation of Duties Problem is defined as follows:

Definition 11 (Extended Separation of Duties Problem). Given a rela-
tion r over a relation schema R(A), a well-defined set of confidentiality con-
straints C, a set of visibility constraints V , a set of closeness constraints Γ ,
a tuple identifier tid ⊂ A, a weight function wr, servers S0, . . . , Sk, maximum
capacities W0, . . . ,Wk ∈ R≥0 and weights α1, α2, α3 ∈ R≥0. Find a lossless
confidentiality-preserving fragmentation f = (f0, . . . , fk) of minimal cardinal-
ity which satisfies wr(fj) ≤ Wj for all 0 ≤ j ≤ k such that the weighted sum
α1 card(f)− α2 satV (f) + α3 distΓ (f) is minimal.

Generally the choice of the weights α1, α2 and α3 depends on the application.
Yet, a reasonable choice is to assign priorities to the three different objectives.
In most scenarios, the overall number of necessary servers will have the high-
est impact on the utility and therefore, minimizing it should have the highest
priority. The satisfaction of visibility constraints has the second highest prior-
ity. Finally, among those solutions, the distribution of the closeness constraints
should be minimized. Under the assumption that |V | > 0 and |Γ | > 0, one
possible solution is given by α1 = 1, α2 = 0.9

2|V | and α3 = 0.87
2(k+1)|V ||Γ | .



13

5.1 Complexity Analysis

Next, NP-hardness of the Extended Separation of Duties Problem is shown. To
accomplish this, the similarity to the standard version is used.

Theorem 2. The Extended Separation of Duties Problem is NP-hard.

Proof. The proof is by reducing an instance of the Standard Separation of Duties
Problem, denoted by SSoD, on an instance of the Extended Separation of Duties
Problem, denoted by ESoD. This is done by canonically adopting the provided
parameters and additionally defining the set of visibility constraints V := ∅
and the set of closeness constraints Γ := ∅. Formally, let SSoD be defined by a
relation r over a relation schema R(A), a tuple identifier tid ⊂ A, a set of well-
defined confidentiality constraints C, a weight function wr, servers S0, . . . , Sk
and maximum capacities W0, . . . ,Wk ∈ R≥0. Then, ESoD is defined as follows:

– The relation r over the relation schema R(A)
– The tuple identifier tid
– The weight function wr : P(A) −→ R≥0
– The servers Sj for 0 ≤ j ≤ k
– The server capacities Wj for 0 ≤ j ≤ k
– The set of confidentiality constraints C
– A set of visibility constraints V := ∅
– A set of closeness constraints Γ := ∅
– Weights α1 := 1, α2 := 1 and α3 := 1

Let a solution of ESoD be given by a lossless confidentiality-preserving fragmen-
tation f = (f0, . . . , fk). As V and Γ are empty, this fragmentation must be of
minimal cardinality. For SSoD however, a correct fragmentation is required and
therefore, to establish the disjointness property, duplicate attributes must be
eliminated from some fragments in f to obtain a correct fragmentation f ′. This
can be achieved in polynomial time. The correct fragmentation f ′ then solves
both the standard and the extended version of the Separation of Duties Problem.
To conclude the proof, the case that one of the instances is not solvable must be
discussed. Due to the fact that every correct vertical fragmentation is also loss-
less and that every lossless fragmentation can be transformed into a correct one
by removing duplicate attributes, it is clear that there exists a correct vertical
fragmentation of r if and only if there exists a lossless vertical fragmentation of
r. Hence, SSoD is solvable if and only if ESoD is also solvable.

6 Conclusion and Future Work

In this work we have presented a practical approach for preserving confiden-
tiality in cloud databases which does not require encryption. Our separation of
duties approach is based on the observation that by vertical fragmentation and
by distribution of fragments among multiple non-communicating cloud database
servers, sensitive associations among columns can be broken such that each of



14

these servers only stores an insensitive portion of the database. To model the
confidentiality concerns, confidentiality constraints were introduced. Visibility
constraints and closeness constraints were introduced to increase the utility
of the resulting vertically fragmented database. The problem of finding such
confidentiality-preserving vertical fragmentations was shown to be NP-hard.

Our approach was studied in this paper for a single database relation. How-
ever it more generally applies as well to databases consisting of many relations
as studied previously in [5] to make the theory applicable in practical scenar-
ios. Moreover, because certain combinations of attributes often reveal sensitive
information about others, data dependencies can be introduced, too – this set-
ting was also considered in [5]. Together, the confidentiality constraints and data
dependencies are capable of expressing a wide range of confidentiality concerns
that appear in the context of cloud databases.

One possibility to expand this work is to develop heuristics for solving the
Separation of Duties Problem. The evaluation in [5] has shown that modern ILP
solvers are capable of quickly finding confidentiality-preserving fragmentations
of minimal cardinality. However, the introduction of visibility constraints can in-
crease the time for finding an optimal solution significantly. Therefore, heuristics
can be beneficial in situations where a long runtime is expected. Furthermore,
as sensitive associations could not only occur between columns but also between
rows of a database, another interesting extension of this work is to additionally
explore horizontal fragmentation [22] which means that database tables are frag-
mented by rows. In combination with vertical fragmentation this leads to the
problem of finding confidentiality-preserving hybrid fragmentations.

Last but not least, it might be worthwhile to study separation of duties also
for non-relational data models (as for example surveyed in [23]).

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed
architecture for secure database services. In: The Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005) (2005)

2. Biskup, J., Preuß, M., Wiese, L.: On the inference-proofness of database frag-
mentation satisfying confidentiality constraints. In: International Conference on
Information Security. pp. 246–261. Springer (2011)

3. Bkakria, A., Cuppens, F., Cuppens-Boulahia, N., Fernandez, J.M., Gross-Amblard,
D.: Preserving multi-relational outsourced databases confidentiality using fragmen-
tation and encryption. JoWUA 4(2), 39–62 (2013)

4. Bollwein, F., Wiese, L.: Closeness constraints for separation of duties in cloud
databases as an optimization problem. In: British International Conference on
Databases. pp. 133–145. Springer (2017)

5. Bollwein, F., Wiese, L.: Separation of duties for multiple relations in cloud
databases as an optimization problem. In: Proceedings of the 21st International
Database Engineering & Applications Symposium. pp. 98–107. ACM (2017)

6. Ciriani, V., De Capitani Di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage. In:



15

European Symposium on Research in Computer Security. pp. 171–186. Springer
(2007)

7. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation design for efficient query execution over sensitive dis-
tributed databases. In: ICDCS. pp. 32–39. IEEE Computer Society (2009)

8. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: Outsourcing data while maintaining confidentiality. In:
ESORICS. Lecture Notes in Computer Science, vol. 5789, pp. 440–455. Springer
(2009)

9. Ciriani, V., De Capitani Di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM Transactions on Information and System Security (TISSEC) 13(3),
22 (2010)

10. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Selective data outsourcing for enforcing privacy. Journal of Computer
Security 19(3), 531–566 (2011)

11. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.:
An OBDD approach to enforce confidentiality and visibility constraints in data
publishing. Journal of Computer Security 20(5), 463–508 (2012)

12. De Capitani di Vimercati, S., Erbacher, R.F., Foresti, S., Jajodia, S., Livraga, G.,
Samarati, P.: Encryption and fragmentation for data confidentiality in the cloud.
In: Foundations of Security Analysis and Design VII, pp. 212–243. Springer (2014)

13. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Fragmentation in presence of data dependencies. IEEE Transactions
on Dependable and Secure Computing 11(6), 510–523 (2014)

14. Dwork, C.: Differential privacy: A survey of results. In: International Conference
on Theory and Applications of Models of Computation. pp. 1–19. Springer (2008)

15. Frank Codd, E.: A relational model of data for large shared data banks. Commu-
nications of the ACM 13(6), 377–387 (Jun 1970)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

17. Jindal, A., Palatinus, E., Pavlov, V., Dittrich, J.: A comparison of knives for bread
slicing. Proceedings of the VLDB Endowment 6(6), 361–372 (2013)

18. Ozsu, M.T.: Principles of Distributed Database Systems. Prentice Hall Press, Up-
per Saddle River, NJ, USA, 3rd edn. (2007)

19. Samarati, P.: Protecting respondents identities in microdata release. IEEE trans-
actions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

20. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(05), 557–570 (2002)

21. Waage, T., Wiese, L.: Property preserving encryption in NoSQL wide column
stores. In: Cloud and Trusted Computing (OnTheMove Federated Conferences).
Springer (2017)

22. Wiese, L.: Horizontal fragmentation for data outsourcing with formula-based con-
fidentiality constraints. In: IWSEC. Lecture Notes in Computer Science, vol. 6434,
pp. 101–116. Springer (2010)

23. Wiese, L.: Advanced Data Management for SQL, NoSQL, Cloud and Distributed
Databases. DeGruyter (2015)


