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Abstract

Nowadays, cloud storage providers are widely used for outsourcing data. These remote cloud servers are
not trustworthy when storing sensitive data. In this article we focus on the use case of storing data in a cloud
database using a particular sub-category of NoSQL databases – so-called wide column stores. Unfortunately
security was not a primary concern of the NoSQL systems designers. Using encryption before outsourcing
the data can provide security. Conventional encryption however limits the options for interaction because
the encrypted data lacks properties of the plaintext data that the database systems rely on. Various schemes
have been proposed for property-preserving encryption in order to overcome these issues, allowing a database
to process queries over encrypted data. In this article we comprehensively present details of our framework
CloudDBGuard that allows using property-preserving encryption in unmodified wide column stores. It hides
the complexity of the encryption and decryption process and allows various adjustments on specific use cases
in order to achieve a maximum of security, functionality and performance.
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1. Introduction

In times of “Big Data” and the “Web 2.0” [1] conventional (often SQL-based) databases may run into
difficulties due to changed usage requirements. On the one hand there are new performance demands. While
SQL environments usually focus on being ACID [2] compliant, it is much more important for modern web
services to to address the trade-off between high availability, consistency and (since they naturally run in
distributed environments) to be tolerant regarding network partitions in the underlying infrastructure [3].
On the other hand there are different demands regarding the data structures themselves. SQL tables are not
well suited to represent loosely structured or sparse data sets like they are typical for today’s webservices.

NoSQL (Not only SQL) databases (see [4] for a comprehensive survey) were designed for meeting those
new requirements, and they attracted more and more attention over the last years. A special sub-category
of NoSQL databases are so-called wide column stores (WCS). Many of the global players on the market
developed their own solutions: examples like Google’s Bigtable [5](used for instance in the Google search
engine, Google Maps, Google Earth, Youtube) or Facebook’s Cassandra [6] (used for instance in Twitter,
Reddit and Facebook itself until 2011) show that almost everybody uses several services in their daily life
that heavily utilize NoSQL WCSs. Because of their flexible and efficient behavior, WCSs are also offered
by cloud storage providers, where users can book storage space on demand. It is hence also common to use
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WCSs as a cloud storage customer. In particular, several cloud database providers offer flexible on-demand
services for running Apache Cassandra or Apache HBase databases remotely in their clusters.

Most WCSs have not been designed with security aspects in mind. The fact that WCSs usually lack
security features like authentication or user (rights) management exacerbates this problem. The only ex-
ception is Apache Accumulo that provides cell-level access control but no encryption. This raises concerns
how confidential data can be protected from a curious cloud storage provider or other attacks by unknown
third parties. The common WCSs do not offer any means to ensure the protection of confidential data from
unauthorized access.

Data confidentiality and security can be provided by encryption. But besides the protection of data
there is also the requirement for the ability to process the data efficiently in cloud services. Thus, in general
there is a tension between these two needs. Ideally direct processing of encrypted data should be possible
in order to avoid downloading data to a trusted site, decrypting, processing and then re-encrypting and
uploading the data again. We target the use case of managing and querying data in WCSs. For the sake
of not compromising the working principles of the database systems, the data needs to be kept searchable
(e.g. text) and sortable (e.g. text, numeric values). That means certain information (e.g. order relations)
is supposed to leak intentionally. This concept is commonly referred to as property-preserving encryption
(PPE). While several existing approaches made use of PPE schemes, none of them targeted the application
of PPE for WCS. We extend prior work [7, 8, 9, 10] as follows:

• we present the architecture of our framework called “CloudDBGuard”1 for utilizing property-preserving
encryption in NoSQL WCSs and discuss several practical considerations that have to be taken into
account when running encryption frameworks with these database systems;

• we give an in-depth account of implementation details that are specific to managing and querying
encrypted data in WCSs – in particular, when providing a unified API for HBase and Cassandra;

• we investigate combinations of property-preserving encryption schemes that exploit their advantages
and minimize their weaknesses for certain use cases; we organize them in so-called “table profiles”;

• we show practical feasibility of our approch by conducting performance comparisons assessing the
impact of the encryption overhead using the currently most popular NoSQL WCSs2 Apache Cassandra
[6] and Apache HBase [11]; this allows making statements in the context of real-world technologies.

We also note that our framework offers support for data distribution over multiple databases (even cross-
platform); that is, columns of the same table can be further distributed over multiple databases at different
cloud providers to enhance security (a concept known as “separation of duties”[12, 13] or “partitioned
data security” [14]). We also put much effort into the extensibility of our platform; other WCS database
technologies as well as more PPE schemes can easily be added.

The article is organized as follows. Section 2 provides the background on wide column stores, property-
preserving encryption and onion layer encryption. Section 3 describes the concepts and interaction workflows
of our framework. Section 4 gives an in-depth description of the components of our framework. Section 5
reports on the runtime experiments with 10 benchmark queries that combine several property-preserving
encryption types. Section 6 concludes this article with a discussion and suggestions for future work.

2. Background and Related Work

2.1. Motivating Example

An application scenario for the CloudDBGuard framework is a mail server that stores confidential emails
of several users. While the users are relieved from storing all emails locally, they still require management
features from the mail server. PPE enables the mail server to manage the emails efficiently while preserving

1https://github.com/dbsec/FamilyGuard/
2Solit-IT: DB-engines ranking - http://db-engines.com/en/ranking
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their confidentiality. For example, a user wants to search for emails containing a certain search word – which
is enabled by searchable encryption. Furthermore, the user requires the server to sort the emails by date in
order to retrieve only the most recent ones or the emails from a specified time interval – which is enabled
by order-preserving encryption. In order to benchmark this scenario (in Section 5), the widely-used Enron
corpus [15] served as our data set. The Enron dataset comprises e-mails of 150 employees of a company.
Our test queries combine equality tests (to find a sender exactly), range queries (to find emails in a certain
timespan) and word search (on the email body).

2.2. The Adversary Scenario

CloudDBGuard provides data confidentiality in case an attacker gets (hacker) or has (administrator) full
read access to the database server. This may also include its hardware (even the physical RAM) as well as its
communication to and from the clients. The attacker behaves passively and follows the designated protocol
specifications. He wants to analyze and infer information from the data, but he does not manipulate it in any
way. He further does not modify queries from the clients or the results being returned. This threat model
is commonly referred to as “honest-but-curious” [16]. The assumption of an honest-but-curious attacker
is common in many scenarios where it is assumed that the cloud database offers its service truthfully and
follows the protocol as otherwise customers would move on to another provider.

Note that while the attacker in the honest-but-curious model remains passive, there is also the possibility
of a malicious attacker, that manipulates result sets or protocols. The case of a malicious/active attacker
includes the case that responses are withheld by the cloud database or that fake records are returned. These
cases address the problem of integrity of database answers. There are several approaches (like authenticated
data structures [17, 18]) that handle integrity checking of database responses, however they do not come for
free in terms of storage space and response time. Database integrity is not the main focus of the presented
system and hence out of scope of this article.

2.3. The Data Model of Wide Column Stores

WCSs (sometimes also called extensible record stores) are inspired by Google’s BigTable architecture [5].
Publicly available open source databases that rely on the same or a very similar data model are for example
Hypertable [19], Apache Cassandra [6], Apache HBase [11] and Apache Accumulo [20].

The operating principles of WCSs can be roughly described as follows. A so-called keyspace contains a set
of tables and is hence analogous to a database in a conventional SQL database system. WCSs furthermore
use tables, rows and columns like traditional relational (SQL-based) databases; however, every row has to
have an identifier that is unique for the table. The fundamental difference is that columns are created for
each row instead of being predefined by the table structure. Thus, except for a row identifier, two rows can
have a completely different set of columns, even though they belong to the same table. In a way rows are
comparable to sets of key-value pairs: They can consist of an arbitrary number of fields, that are required
to have unique names (we call them “column identifiers”) and can be of any data type. Another important
difference to SQL databases is that rows are maintained in lexicographic order of their row identifiers. As
WCSs are distributed systems, ranges of such row identifiers serve as units of distribution. Hence similar
row identifiers (and thus data items that are likely to be semantically related to each other) are always kept
physically close together, in the best case on neighboring sectors on disk, but at least on the same node
of a cluster for the purpose that reads of ranges are restricted to communication with a minimum number
of servers. Because row identifiers are used for coordinating distribution, changing them would result in
changing the data’s physical position within the database (cluster). That is why most WCSs do not even
support changing row identifiers.

The smallest units of information are key-value-pairs with the key itself having multiple components.
One of these components is a timestamp, enabling the database to maintain an automatic version control,
which can be operated in two ways: either by setting a maximum number of versions to keep, or by specifying
a “time-to-live” (TTL) after which data items are to be deleted. Other components of the full key needed to
access a value are the keyspace, table and column identifier. Thus, more formally WCSs can be considered
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sparse, distributed, multidimensional maps (see [5]) of the form

(keyspace, table, column, row identifier, timestamp)→ value.

WCSs in general heavily profit from table layouts that are tailored to the queries appearing later on. They
are designed for queries with filter conditions involving (if possible) only the row identifier column or columns
that maintain a secondary index. Thus it is not unusual to have one table per query, even if that causes
data redundancy. The fact that storage space is usually not an issue in cloud scenarios, is also helpful in
this regard.

Even though all WCSs share the general data model described above, they may differ fundamentally in
the underlying architectural concepts. This also applies to Apache Cassandra and Apache HBase. Hence
our ambition was to not interfere with the general principles of each database system; the CloudDBGuard
framework runs without modifying the database installations.

2.4. Property-preserving Encryption

Property-preserving encryption (PPE) retains certain properties of the plaintext (like order of numerical
values) on the ciphertext – or it relies on additional index structures on encrypted values (to support efficient
search on encrypted data). The types of PPE relevant for this work are deterministic encryption (DET),
order-preserving encryption (OPE) and searchable encryption (SE):

• DET. The purpose of DET is enabling the database server to check for equality by mapping identical
plaintexts to identical ciphertexts.

• OPE. The purpose of OPE is enabling a server to learn the relative order of data elements without
revealing their exact values. OPE encrypts two elements p1, p2 of a domain D in a such way that
p1 ≤ p2 ⇒ Enc(p1) ≤ Enc(p2) for all p ∈ D. Thus, its use cases are sorting and range queries over
encrypted data. A lot of OPE schemes have been proposed with different strategies to map a plaintext
to a ciphertext domain (see [21, 22, 23, 24]).

• SE. The purpose of SE is enabling a server to search over encrypted data without revealing plaintext
data. Most SE schemes use indexes (see [25, 26, 27]), which are encrypted in such a way, that only
a token (a so-called trapdoor) sent by the querying user allows for comparing the searchword with
the ciphertext. There are also schemes, that avoid having an index by embedding the trapdoor in a
special format into the ciphertext itself (see [27]).

2.5. Related Work

This section surveys related work, limited to approaches that are also designed for the honest-but-curious
adversary model, compute over encrypted data and rely on encryption to provide data confidentiality.

The most popular work on performing queries over encrypted data is “CryptDB” [28] for mySQL and
PostgreSQL. It was the first system that could be considered practical, introducing a variety of innovative
features, most importantly: the onion layer model (OLM). However, it uses only PPE schemes that are
slow for querying, because the authors avoid (client or server side) indexes. Thus, CryptDB does not scale
well when datasets reach a certain size. However, it still receives a lot of scientific attention, in favorable
[29, 30] as well as critic ways [31]. “Monomi” [32] can be considered being an extension of CryptDB, trying
to support arbitrary SQL queries with the cost of higher requirements for the client machine. “BlindSeer”
[33] addresses efficient sub-linear searches for SQL-queries that can be represented as a monotone boolean
formula, consisting of the search conditions: keyword match, range and negation. “DBMask” [34] enforces
access control cryptographically, based on attribute based access control and combining broadcast and
hierarchical key management. [35] propose a distributed architecture for encrypted query execution on
PostgreSQL, MySql, and SQL Server relational databases; they include several cryptographic methods and
test them with the common TPC-C benchmark. More recently, [36] propose a new encryption scheme that
is able to handle conjunctive queries (as a subset of SQL queries).
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Some approaches focus managing encrypted data in non-relational database systems. One of them is
“Arx” [37] on top of MongoDB, which introduces two proxy servers and needs to know in advance what
operations are to be performed on what fields in order to maintain the required indexes; these indexes
are built on top of data that are encrypted with conventional symmetric encryption. The Minicrypt [38]
system uses Cassandra as the underlying storage system but focuses on compression of data encrypted with
conventional symmetric encryption.

Existing benchmarks of querying encrypted data often assess only one encryption method per category in
isolation. In contrast, our approach is a comparative one: we aim to integrate different encryption methods
into one platform and compare their behaviour for different use cases in order to identify the best settings
for each use case.

3. CloudDBGuard Concepts and Workflows

3.1. Concepts and Overview

CloudDBGuard aims for executing queries over encrypted data in WCSs. Several different encryption
methods are applied to the plain data to support different kinds of queries. It uses the basic concept of
onion layers [39] to surround data with a strong encryption that is only removed when data are actually
accessed. CloudDBGuard provides an application programming interface (API) for key management and
encryption tasks. Because we support several different database systems, the API of CloudDBGuard hides
the complexity of the databases’ native APIs; CloudDBGuard hence unifies the data access by mapping the
API queries to the query languages and data models of the two underlying database systems (Cassandra
and HBase) as detailed in Section 3.4.

The client application using the API of CloudDBGuard runs in a trusted environment. For the API to
be able to manage its tasks, it has to maintain auxiliary data, namely keys, metadata and (if necessary)
indexes on client side. Such data are stored persistently in the client’s file system. The API manages the
database connections, data transfer, encrypting and decrypting. Furthermore it keeps track of metadata
and key management. CloudDBGuard utilizes advanced (index-based) encryption schemes, which allow the
system to scale better when datasets become large. The database server never sees any decryption keys,
hence it is never able to decrypt private data. Thus, adversaries (e.g. administrators) are not able to gain
sensitive information only from read access. Moreover, the database server software remains unaffected:
there is no need to change the database server software in order to work with CloudDBGuard.

As CloudDBGuard uses encryption schemes that potentially use a high number of cryptographic keys,
the manual management of these keys is impractical for the user, but since the database server is not allowed
to possess them either, they have to be managed and stored on the client side. This is why CloudDBGuard
uses a Java Cryptography Extension KeyStore (JCEKS) provided by the Java Cryptography Extension
(JCE) for that task. A JCEKS allows storing an arbitrary number of keys, each of which can be accessed
using a custom label. The user has to provide only one single password for the client to gain access to all
keys, which massively improves the usability.

3.2. Onion layers in WCS

The concept of onion layers was introduced in CryptDB by [39], also calling it adjustable query-based
encryption, for SQL databases. However WCSs have some fundamental differences, that affect the designs
of the onion layer model. Our framework uses four types of onion layers. The following paragraphs describe
them from the database perspective.

RND - Random Encryption. The Random Encryption layer provides the maximum security possible, which
is indistinguishability under an adaptive chosen plaintext attack (IND-CPA). Two equal plaintext values
are mapped to different ciphertexts with a very high probability. This is achieved using AES in cipher
block chaining (CBC) mode or Blowfish with randomly generated encryption keys and initialization vectors
(IVs). Every row of a table has a column for storing its own individual IV (“RND Row-IVs” in Figure 1)
and for every column an own individual encryption key is stored in the column’s metadata on client side
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(“RND column encryption key” in Figure 1). Thus, the server cannot learn any information, which is why
this layer is used as outermost layer for all onions, except for the SE onion, which already provides strong
security guarantees by itself (depending on the used scheme either IND-CPA or IND-CKA2 as described
below). The RND layer cannot be used for any computations over the encrypted data, because it leaks no
information relevant for database operations. Thus it protects data that is never required to be processed
by query conditions.

DET - Deterministic Encryption. The layer for deterministic encryption needs to store non-probabilistic
ciphertexts, meaning the same plaintexts have to be mapped to the same ciphertexts, e.g. in order to check
for equality. This is achieved using AES (CBC) with the same randomly generated encryption key and IV
throughout the entire table. Both are stored in the table’s metadata on client side (see Figure 1). Using the
same key for deterministic encryption throughout the entire table enables the system to evaluate equality
conditions between different columns inside the same table. As long as the outermost random layer has not
been removed, the database cannot infer such equality conditions from the encrypted columns.

Figure 1: Encryption key and IV management of the RND and DET layer

OPE - Order-Preserving Encryption. We evaluated the performance as well as strengths and weaknesses of
various OPE schemes in our framework; the tests were performed using the OPE schemes RSS [22], OACIS
[23], mOPE [21]. Their different strengths and weaknesses qualify them for different tasks for the encryption
of a table. RSS or mOPE can be used for row identifiers because their ciphertexts are immutable – which
maintains database-internal sorting properties discussed in detail in Section 2.3. All other columns that are
involved in range queries, can be encrypted with either of the three schemes. However, they differ in their
encryption and decryption efficiency and the storage space consumption. RSS is a good allrounder, it is fast
to compute, but it requires a client side index. Furthermore, mOPE can be used if client-side indexes are to
be avoided; it is thus the most storage-efficient solution but it is also the computationally most expensive
OPE scheme. As described in Section 3.3, OACIS cannot be used for row identifier columns because of its
mutable ciphertexts; it has the best runtime properties of the available schemes, which makes it especially
attractive for large amounts of data; a client-side index is needed as well with OACIS.

SE - Searchable encryption. We realized the SE layer using the schemes SWP [27] and SUISE [26] and
evaluated them with our framework. Similar to the OPE schemes their strengths and weaknesses determine
their individual use cases when it comes to encrypting a table. SWP does not require maintaining a state
or index and thus can avoid using client side storage; the downside of this is that it has a search time linear
to the dataset size, since it requires reading the data entirely when searching. Alternatively, using SUISE
requires a very small client side index and a rather large additional server side index. SUISE is beneficial
when certain queries are supposed to be executed frequently, as it can return results cached in the client-side
index beginning from a second search for a keyword in constant time. While SWP satisfies the notion of
IND-CPA (as described above), SUISE satisfies the notion of indistinguishability against adaptive chosen
keyword attacks (IND-CKA2, see [25]). IND-CKA2 denotes security against an adversary capable to adapt
his queries to previously obtained trapdoors and results.
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3.3. Mapping Plaintext Columns to Ciphertext Columns

After having defined the onions, one might be tempted to just encrypt all columns using all onions and
strip off the necessary layers when querying requires it. However, the WCS data model as well as the PPE
schemes themselves come with some aspects that impede this approach.

The first aspect to consider can be inferred from the WCS datamodel itself. As explained in Section
2.3 a fundamental working principle of WCSs is keeping all rows of a table sorted by the content of the
row identifier column. That means the database has to perform a sorting by this column already at data
insertion time. Thus, it has to be able to compare the row identifier of a new row to be inserted with already
existing ones in the database. That means the standard OPE onion cannot be used, since its outermost
RND layer does not allow for order comparisons. Using it would break the WCS data model. Therefore
row identifier columns must be treated differently from all other columns regarding the onion layer design.
They must leak the order of values, before it comes to querying the database and thus they are not allowed
to have a RND layer as outermost layer neither can OPE schemes with mutable ciphertexts be used.

A second limiting aspect is caused by the query operators. Depending on the type of data it makes no
sense to maintain all onions. For the sake of simplicity we distinguish between three types of data in this
work: strings, numerical values and byte blobs. All other data types can be inferred from these three basic
types. An example for an onion that makes no sense is the SE onion for numerical values. There is no query
mechanism provided by a database, that allows searching for substrings within numerical values.

OPE comes with a third challenge. OPE schemes work by mapping values from a plaintext space
(“domain”) to a ciphertext space (“range”); it is crucial to define the exact size of both spaces in advance.
This is a hard thing to do for strings and byte blobs as they can become extremely large. A straight-forward
solution to this problem was introduced by [40], proposing to pad all strings to the same length using 0x00s
and then simply use the numerical values given per character by the ASCII table3. Assuming a small
maximum allowed string length of only 4 bytes “abc”4 would result in 0x61626300 (which is equivalent to
97·2563+98·2562+99·2561+0·2560 = 1627389952+6422528+25344 = 1633837824 in decimal notation). As
can be seen from this example, even for very short strings the numbers soon become very large. Storing the
above number would require 31 bits5. Limiting the message space to the 96 actually allowed and printable
characters of the ASCII table barely improves the situation: 65 · 963 + 66 · 962 + 67 · 961 + 0 · 960 = 58122528
which appears to be a much smaller number in decimal notation, but still takes 26 bits when written binary6.
In order to still deliver a good compromise between string length flexibility and performance, we use the
following approach. We chose to use native Java data types of fixed length which is highly desirable for
performance reasons; hence we operate with Java’s native data types Integer (32 bits) and Long (64 bits)
– in contrast for example to using Java’s BigInteger type, that can grow arbitrarily depending on the value
it represents which makes it computationally expensive. Our API uses a 32 bit Integer as input for the
OPE schemes, while a 64 bit Long serves as output; the ciphertext space is hence at least twice as big in
terms of bit length compared to the plaintext space. Because we chose Java’s Integer (32 bits) as input
for OPE, Strings longer than 4 characters (and thus 32 bit) are split up into chunks, each with a length
of 4 bytes, while the last (= least significant) part is padded, if necessary. Those chunks are then used as
input being 4 bytes = 32 bits long. After they are OPE-encrypted separately, they are (now having a size
of 8 bytes = 64 bits) concatenated again and stored in the database in byte array representation. Since
having a pre-defined maximum string length is still mandatory for producing results that are comparable
to each other later on, this is done for a exactly eight chunks (= 32 characters). If the plaintext string
is not long enough to produce eight chunks, the ”least significant“ chunks are generated randomly. This
will not have an impact on the order after encryption, since the actually existing characters of the original
plaintext strings are always completely considered (up to the 32nd byte). Padding with zeros as in [40] or
using “0000”-chunks would leak the plaintext string length.

3see for instance http://www.asciitable.com/
4numerical values from the ASCII table: a = 97 = 0x61, b = 98 = 0x62, c = 99 = 0x63
5110 0001 0110 0010 0110 0011 0000 0000
6101 0010 1011 0110 1101 0010 0000
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Mapping the plaintext to ciphertext hence depends on the data type stored in a column. String columns
are the most complex cases, mainly due to the costly transformation procedure necessary for realizing OPE
column as described above. All three onion types are applied for strings. The DET layer can be used for
equality checks. The OPE layer is able to sort strings lexicographically or for example do range queries from
“A” to “Z”. Furthermore the SE onion enables the user to query for single words within larger texts.

Integer columns are easier to handle. They already contain numerical values, such that the costly
conversion process explained above is not needed. Furthermore the SE layer is not needed for integers,
because searching for substrings within numbers is not supported (if this functionality is desired, string
columns should be used instead). Finally, byte blob columns are the simplest cases. Byte blobs usually
represent raw binary data (e.g. images), that are not supposed to be searched, ordered by or compared to
something. Thus, they are only deterministically encrypted in order to be able to decrypt them efficiently
or perform equality checks.

To sum up, the SE layer encryption is only performed, if the plaintext data is a string. OPE layer
encryption is only performed, if the plaintext data is a string or numerical value. Every column gets its own
instances of the PPE schemes they use. That means in particular, indexes are maintained per column, not
per table; answering a query involves only the index data that is actually required.

3.4. Unifying the Data Models of Cassandra and HBase

Cassandra as well as HBase follow the data model of WCSs but they differ in the way of achieving that.
Involving both databases at the same time for storing data therefore requires analyzing their differences,
which have to be compensated for by the API. The following section discusses key differences of the way
both databases realize the WCS data model and how this affected the design of our API; a summary is
given in Table 1.

How to Address the Row Identifier Column. Cassandra and HBase have different ways of addressing the
row identifier. Cassandra requires assigning a specific name and data type for it in the process of creating
a table. In contrast, row identifier columns in HBase do not get an explicit name and are always of type
byte blob. Thus, Cassandra has to be given the more precise definitions regarding the row identifier. That
is why defining a name and data type is mandatory for creating tables in CloudDBGuard.

Composite Keys. The row identifier can be considered equivalent to SQL’s primary key, since both have the
task to uniquely identify each row in a table. Thus, fields containing row identifiers must contain unique
values and cannot have NULL values. In Cassandra it is possible to combine multiple fields to create a row
identifier, which is then called a composite key. A composite key always consists of two parts. The first part
is the partition key, that is responsible for data distribution across the nodes like a “regular” row identifier
consisting of a single field. The second part is the clustering key, that is responsible for storing data within
a partition defined by a certain partition key. Both parts can again consist of multiple fields.

In contrast, HBase does not know the concept of multiple fields defining a row identifier. It always uses
one single-field row identifier per row. If the combination of multiple fields is desired for generating unique
row identifying key values, that has to be created “manually” (by concatenating values, e.g. append one
string to another) and stored as single row identifier. HBase’s native Java API provides options for defining
column prefix filters, that can be used to “simulate” composite keys. HBase is more restrictive concerning
the row identifier design – thus, CloudDBGuard only allows row identifiers consisting of a single field.

Collection Types. Apache Cassandra supports collection types. That means, a single field in a row cannot
only contain a single value, but also a list, set or map. The single elements of these collections can be
addressed by traversal (set), specifying an index (list) or a key (map). In contrast, HBase does not support
collection types, but has an additional column qualifier that can be used as an indexing mechanism within
a “single” row element and thus, realize collection types. While using the API proposed in this article, the
user does not need to care about the difference. When a column is for example specified to contain a set,
the underlying differentiation between using Cassandra’s collection type set and using HBase’s additional
column qualifiers for indexing the different values of a set is taken care of by the transformation layer (see
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CloudDBGuard API Cassandra HBase

Row identifier column: explicit name and type ∼ (API uses explicit name/type) + (API enables explicit name/type)
Row identifier value: single field − (API restricted to single field) ∼ (API uses single field)
Data types for columns ∼ (API uses data types) + (API enables data types)
Keyspace Keyspace Namespace
Table Column family Table
Column identifier Column name Column family
Collection types Collection types Column qualifier

Table 1: Functionalities of the CloudDBGuard API compared to Cassandra and HBase; ∼=functionality maintained,
+=functionality increased, −=functionality restricted

section 4). Thus, even though this design aspect of the databases is fundamentally different, there are no
restrictions or compromises regarding the use of collections, when using CloudDBGuard.

Data types. As already briefly mentioned in Section 2.3 Cassandra differentiates between a variety of data
types, whereas HBase stores everything as byte array. This work will follow the HBase approach and store
only byte arrays in encrypted columns in Cassandra as well. Except for OPE schemes, outcomes of all used
encryption schemes are byte arrays anyway. Storing them as such avoids conversions back to their original
data type and saves runtime. Only OPE ciphertexts have to be converted to byte arrays, which can be done
fast. Columns that are not encrypted (“selective encryption”) will use appropriate data types in Cassandra.

3.5. Interacting with the Databases

Using encryption requires additional efforts, when reading from and writing to the databases. The
ciphertext name of a keyspace, a table or a column identifier is a randomly generated string with a length
of 8 printable characters that is used to identify the corresponding element in queries. Due to the random
generation no information about the plaintext name can leak. The mapping from plaintext to ciphertext
name is only stored on the trusted client side. This section describes the steps that our API executes in
detail.

3.5.1. Writing

Creating a keyspace involves the following steps:

1. For hiding the plaintext name of the keyspace, 8 characters are chosen randomly.

2. A metadata object representing the keyspace is created, containing the the mapping between the
plaintext name and the ciphertext name and all other relevant metadata.

3. Appropriate queries are built and executed to actually create the keyspace on server side.

Creating a table and creating the individual columns involves the following steps:

1. For hiding the plaintext name of the table, 8 characters are chosen randomly. The same is done for
every column. Note that depending on its datatype one plaintext column might result in multiple
columns on server side, each of which represents a required onion. Thus, multiple ciphertext names
per column might be necessary.

2. Metadata objects representing all columns of the table and the table itself are created.

3. Column keys for RND layer encryption as well as a table key and initialization vector IV for DET
layer encryption are created and associated to the table’s metadata.

4. A distribution profile can be set for this table (see [41]) that specifies how the individual columns
are spread across the available database instances (at different cloud providers); this implements the
separation of duties approach to increase security. The only exception is the row identifier column,
which is written to every database in order to be able to join the data items again in the query process.

5. Appropriate queries are built and executed to actually create the (physical) table on server side.
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PPE schemes are involved when actual data is written to the database, that is supposed to be queried
later on. Inserting data requires two types of information – what is supposed to be inserted (the actual row
data) and where is it supposed to be inserted (keyspace, table and column identifiers) – and then involves
the following steps:

1. Given the plaintext names of keyspace and table for the new data items, the first step is to look up
the corresponding ciphertext names in the metadata, as well as the database instances (type and IP
address) involved in storing the table. Furthermore the keystore associated to the keyspace is loaded.

2. An IV for the RND layer encryption of the row is created and stored in the row.

3. Using this IV and (depending on the used PPE scheme) crypographic keys from the keystore all data
items are encrypted in a property-preserving way according to the onion layer model (see Section 3.2).
Thus, one plaintext data item may result in multiple ciphertext data items (each of which maybe the
result of multiple encryptions).

4. Finally the write queries can be constructed (one per row and involved database instance) involving
all previously collected information.

The impact on the runtime required by all these pre-processing steps is investigated further in Section 5.

3.5.2. Querying

When a client sends a query, the API executes the following steps to retrieve and decrypt results:

1. The query may contain a number of conditions that have to be met for a row to be included in the
result set. These conditions are parsed to identify the columns that are involved in those conditions.

2. To check, if a condition is met by a column that was identified in the first step, it might be necessary
to remove the RND layer from a particular onion to get to its underlying DET or OPE encrypted
values. The metadata is asked if the RND layer on that column still exists; if so, it is removed.

3. Afterwards the set of all columns is identified that have to be read from the database(s). This set
consists of two subsets: The first subset consists of all columns that are involved in query conditions;
the second subset consists of all columns, that were selected by the user (and thus, are not necessarily
involved in any query conditions). For the second subset, the DET onion is chosen, because it is the
fastest one to be decrypted later on. For the first subset – depending on the type of condition – the
appropriate ciphertext column is selected (e.g. the OPE onion, if the condition it is involved in is an
order comparison).

4. Furthermore, there are two columns, that are always read from the database, independent of the query:
the row identifier column (needed to address rows in the result set later and to join result sets from
multiple database instances) and the IV column (needed for further RND layer decryption on columns,
that were never involved in query conditions).

5. After all necessary columns are identified, the metadata is used to look up the database instances
responsible for storing them. One query is constructed for each database instance. In every query
the plaintext keyspace, table and column identifiers are replaced by their ciphertext counterparts. In
addition, all terms in conditions are replaced by their PPE encrypted equivalents. In the end no query
contains any plaintext information anymore and can be executed.

6. If multiple database instances were involved in the initial query, the rows of their individual result sets
are now joined using the row identifier column.

7. As a last step the final result set is decrypted using the DET onion, as discussed in Step 3.

4. CloudDBGuard Architecture and Implementation

Implementation was done in Java, including all PPE schemes, API methods and database communication.
Since disk access and memory management in WCSs are performed at column level, the indexes of all PPE
schemes are designed at column level, too. That means every column that uses a PPE scheme relying on
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an index, gets its own index. If a column is part of a filter condition specified in the query, only the index
information of that column has to be taken into account when processing that query.

The Cassandra Java Driver is used to interact with Apache Cassandra, which allows utilizing the current
version 3 series of the Cassandra Query Language (CQL); CQLv3 is the first version of CQL, that explicitly
supports collections. Internally it creates a key-value-pair for every item of a set with the item as key and
null as value. Querying Cassandra can be done either by directly passing query strings to the driver or using
the integrated query builder.

In contrast, HBase does not provide a high level query language. The fastest way to interact with it is
its native Java API. All operations are performed by creating put-, get-, or delete-objects first, equipping
them with appropriate row filters that correspond to query conditions (if desired) and handing them over
in form of “scanners” to objects, that represent tables and keyspaces.

Persistent storage on client side is mainly needed for two things. On the one hand, OPE schemes need
to store their indexes here. For that purpose it is sufficient to just save the serialized representation of the
corresponding data structures in files. On the other hand, there is the metadata of the encrypted columns,
which is stored in XML representation.

This section discusses the data flow and involved components of CloudDBGuard’s architecture in detail.
As can be seen in Figure 2 the data passes three layers on its way from the application to the database: the
application layer, the encryption layer and the transformation layer. Each layer serves individual tasks.

Figure 2: Architecture of CloudDBGuard

4.1. Application Layer and Unified Request Objects

Every interaction with the database is initiated by calling one of the available methods provided by the
application layer. Thus, this layer fulfills the following tasks:

• It provides a unified way of querying the supported databases. The details of the database’s native
query languages are no longer of concern for the user. Therefore the application layer creates “uni-
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fied request objects” (UROs) for every interaction with the database. These UROs describe exactly,
what is supposed to happen (using their Type field, e.g. CREATE TABLE, INSERT ROW etc.), where
it is supposed to happen (using their DBLoc field, short for DBLocation) and what data is involved
(String/Int/Byte[ Set] Args). A URO has one more field, that stores a reference to the row identi-
fier column, which is important for some query types. As the name suggests, DBLoc is a data structure,
that precisely describes a location within the database, consisting of a keyspace, a table name and a
pattern restricting rows or columns. For example, when creating keyspaces only the keyspace name
is of interest and all other values can be set to null. In contrast, when querying the database, the
keyspace and table names have to be provided, as well as the selected columns and row restricting
conditions (for example in range queries). The use of the String/Int/Byte[ Set] Args is very ver-
satile. They can contain nothing or very few data – e.g. when creating a keyspace – or be filled with
values – when actually inserting rows of data into tables.

• It takes care of the client side metadata, which consists of two subtasks. Firstly, it always synchronizes
the metadata. If new keyspaces, tables or only columns are created or deleted, the metadata has to
be updated. This is important for knowing the location of actual data and for translating plaintext
UROs into their ciphertext counterparts later on. Secondly, it stores the metadata persistently on
client side, and loads/saves it to an XML file whenever necessary.

• When data is returned from the database(s) it makes the decrypted results available to the requesting
application in an easy and unified way.

4.2. Encryption Layer

The UROs returned by the application layer still contain plaintext data and plaintext metadata that
must not leak to the database. Thus, when querying the database it is the purpose of the encryption layer to
replace all sensitive information within a URO with the corresponding ciphertext data. That encompasses
mainly two subtasks:

• All URO data that describes a location within the database is replaced by the appropriately mapped
ciphertext names read from the client side metadata.

• All plaintext data items within the URO are replaced by their corresponding onion layer ciphertexts.
Information about the state of the onions are read from the metadata as well.

When data is returned from the database, the encryption layer decrypts these ciphertexts.

4.3. Transformation Layer

After having received the UROs with ciphertexts from the encryption layer it is now the task of the
transformation layer to translate the UROs into the databases’ native query mechanisms and actually
connect to and interact with them. In case of Apache Cassandra that means composing and issuing CQL
queries; in case of HBase it means executing the corresponding calls of the native HBase Java API. The
transformation layer also receives the database’s individual result objects and makes them accessible in
a unified way for the encryption layer. Note that the transformation layer is the only part of the entire
architecture, that deals with individual database details. Thus, it is also the only part, that has to be
changed, to support other database systems – only two Java classes have to be implemented in this case.

5. Benchmark

All experiments in this section were run on an Intel Core i5 CPU@2.30GHz, 16GB RAM, an APPLE
SSD AP1024M 1TB SSD using macOS 10.14.5. as a client platform and CentOS 7 on a Parallels Desktop
virtual machine with 4 vCPUs and 4GB of vRAM. The PPE schemes were implemented in Java, using
cryptographic primitives of the Java Cryptography Extension and The Legion of the Bouncy Castle Java
Cryptography API. In order to avoid measuring network effects local installations of the databases were

12



Query Types of schemes Queried Columns Query Types of schemes Queried Columns

Q0 DET receiver Q5 DET + SE sender, body
Q1 OPE timestamp Q6 OPE + OPE sender, timestamp
Q2 SE sender Q7 OPE + SE timestamp,body
Q3 DET + DET sender, receiver Q8 SE + SE body, subject
Q4 DET + OPE sender, timestamp Q9 DET + OPE + SE sender, timestamp, subject

Table 2: Types of generated queries

used, as only the computation time of the schemes in combination with the speed of the databases was to
be measured.

The widely-used Enron corpus [15] served as our data set. The Enron dataset contains the e-mails of 150
employees of the Enron company. We parsed a random subset of 10 000 mails to simulate an average sized
mailbox as well as a random subset of 100 000 mail to simulate a larger mailbox and created one database
row for each mail. This also includes that the result sizes where scaled due to more matching database
records. Our benchmark queries select the primary key (the mail identifier) of these rows meeting certain
conditions.

We aim to benchmark the performance of different categories of property-preserving encryption schemes
(deterministic, order-preserving and searchable encryption) and their combination. In this way we go beyond
prior work [7, 8, 9, 10] where we only benchmarked each category in isolation. We wrote queries for each type
of schemes on its own (Q0-Q2), the six possible combinations of two types (Q3-Q8) and the combination
of all the three types (Q9). Details about the columns queried can be found in Table 2. Each of the 10
queries was run ten times with randomly generated conditions on the queried columns. We tested all queries
with three table profiles [41] for which we identified in previous bencharks the best performing encryption
methods for the following three use cases: (1) STORAGE-EFFICIENT (OPE layer columns are encrypted using
mOPE, SE layer columns are encrypted using SWP), (2) OPTIMIZED WRITING (the OPE scheme best suited
for fast writing is OACIS, as long as pre-sorted inputs are avoided, for the SE layer the SWP scheme is
used) (3) OPTIMIZED READING (the OPE scheme best suited for fast reading is RSS, for the SE layer the
SUISE scheme is used).

Figures 3 and 4 show the results as the average over 10 runs for the dataset sizes of 10k and 100k
emails. We measured the overhead on the client side which includes translating the query into its encrypted
equivalent and obtaining the decrypted result (see Section 4). In particular, the steps measured on client
side are:

• mapping each column involved in the query, the plaintext table names and keyspace names to the
randomized names;

• mapping each query condition on some column into an encrypted variant based on the comparator
contained in the condition;

• translating the API query into the query language of the underlying database system;

• setting up a thread pool for asynchronously querying the affected database systems;

• as well as decrypting the result set and returning it to the client application as a result object.

Moreover, we measured the DB communication as the roundtrip time between issuing the (already
encrypted) query to the database and retrieving the (still encrypted) results.

As can be seen, the query times remain within acceptable time spans of only a few seconds. With
respect to DB communication, HBase (less than 0.8 seconds maximum per query) is consistently faster than
Cassandra (less than 1.6 seconds maximum). This reflects the fact that Cassandra is optimized for writing
while HBase is optimized for reading. Furthermore, searchable encryption is by far the most expensive type
of property preserving encryption, as all queries involving it take the most time. It has a strong impact,
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especially when the data fields are large (like in Q5, Q7 and Q8, which involve performing SE on mail
bodies). In particular, due to randomly chosen query conditions we see an increased runtime of the client-
side result transformation for queries Q5 and Q7 when using HBase in those cases where no matching mail
body could be found: queries without a matching body took roughly 5 seconds in total while queries with
a match took less than 0.5 seconds. We aim to optimize this client-side API behavior in the future. In
contrast, deterministic and order-preserving encryption have less impact on runtime.

Regarding the scalability of our system we observed only a slight overhead due to the increased result sizes
when comparing the 10 000 emails dataset with the 100 000 emails dataset; the maximum time difference
was observed for Q3 in Cassandra for the storage efficient profile where query execution took 2.3 times as
long for the larger data set as for the smaller one.
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Figure 3: Query Performance with Cassandra including DB communication (lower part of each bar)
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Figure 4: Query Performance with HBase including DB communication (lower part of each bar)

6. Conclusion and Future Work

We presented the CloudDBGuard framework that extends our prior work on real-world applications of
PPE schemes. Its functionality was wrapped into an easy-to-use API that hides the complexity of property-
preserving encryption. The user can simply insert a plaintext record into the database by calling the
insertRow method and later on retrieve data by calling the query method that just requires the plaintext
column names to be returned as well as some plaintext query conditions. The user is not bothered by the
cryptographic settings and processes: key generation, key management, encryption and decryption of both
data records and query strings are totally transparent for the user.

Most importantly the API also hides the native interfaces of the underlying database from the user.
Very different native query mechanisms (CQL of Cassandra, the native Java API of HBase) are unified
in an easy-to-use API. Access to all decrypted query results can be obtained using an iterator or even by
directly addressing a value by its row identifier and column identifier no matter what underlying database
was used – this is an additional functionality that is not offered in the native resultset objects of Cassandra
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and HBase. Other database systems can be integrated as well by implementing a single abstract Java class,
most likely resulting in no more than 300 lines of code. The database server(s) remain unmodified. That
means the approach of this work can be easily extended to several other databases (e.g. those hosted by
cloud database providers). Because a client application talks directly to the database server(s) via the API,
this avoids extra network traffic and reduces latencies. Furthermore no specialized cryptographic hardware
is necessary.

The user can optimize the performance by selecting PPE schemes based on profiles for certain use
cases (“table profiles”) or exclude non-sensitive data columns from encryption (“selective encryption”). In
particular, by utilizing SUISE [26] for SE as well as OACIS [23] and RSS [22] for OPE the architecture
proposed in this article takes advantage of index-based PPE schemes, that lead to a better performance
for querying larger datasets. Simple interfaces can be implemented to support further databases and PPE
schemes.

Database reconstruction attacks [42, 43] based on statistics (on the ciphertext or query behavior) are one
major threat to property-preserving encryption; by construction any property-preserving encryption scheme
is prone to such attacks based on the properties leaked in the ciphertext. Some more or less straight-forward
workarounds, which have been proposed in the literature for several approaches, are to perturb statistics
of the ciphertext by 1) distorting the underlying distribution with dummy entries or 2) choose a proper
granularity of the data on which PPE is applied (e.g. only encrypting the year information with a PPE
scheme instead of an entire timestamp down to the level of seconds). Those workarounds clearly come at the
cost of extra post-filtering and/or post-processing on the client side. Another option to rule out statistical
attacks can be based on a combination with other techniques. In our framework, we combined PPE with
a distribution approach (separation of duties [12]) to increase security: tables can be spread across a set
of independent database instances (consisting even of different database types) to increase security and
minimize the threat of statistical attacks. Our prototype supports seamlessly such a distribution of the
outsourced data on multiple providers when creating new keyspaces.

The area of processing queries over encrypted data in WCSs leaves room for further research. We aim
to optimize query behavior of our system in future work ; we plan to include recent developments in the
development of cryptographic algorithms by incorporating them into our framework as well. Moreover, the
CloudDBGuard framework can be extended to support aggregations on server side in order to support the
mathematical functions available in HBase and Cassandra on numerical data. In future work we aim to
compare a choice of homomorphic encryption methods and identify the one with the best properties for that
purpose.
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