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Abstract. Chronic respiratory diseases are one of the leading causes
of morbidity and mortality worldwide. How to prevent the disease or
to diagnose and treat it effectively in the early stage has always been
a focused medical research area. In this paper, a neural network that
was pre-trained based on a large audio event dataset called AudioSet is
transferred and applied in the training and testing of the Respiratory
Sound database ICBHI; in addition, various methods are used in data
preprocessing, neural network configuration and post-processing to im-
prove the performance of the transfer learning model. The final model can
not only converge quickly, but also use the accuracy calculation method
provided by ICBHI Challenge to reach 81.1% in the four classification
tasks containing normal, crackle, wheeze and both respiratory sounds,
which is superior to the previous methods. This paper also analyzes the
unbalanced distribution of the respiratory cycle dataset based on demo-
graphic data on the binary classification task (normal and abnormal).
The binary classification model scored 85.5% and 81.1% on the female
test group and the male test group, respectively. To address the above
differences due to the unbalanced dataset, we used a restricted mixup ap-
proach to successfully reduce the difference between the male and female
test groups to 0.82%.

Keywords: ICBHI dataset, Respiratory sounds classification, Neural
network, Transfer learning

1 Introduction

According to a report released by the World Health Organization (WHO) [1],
in 2016, the number of deaths from non-communicable diseases worldwide ac-
counted for 71% of the total number of deaths. Chronic respiratory disease ranks
third among the four leading causes of death from non-communicable diseases.
More than 40% of countries have fewer than 10 doctors per 10,000 people. How
to prevent a chronic lung the disease or take effective treatment in the early
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stage of disease is an important research topic in modern medicine. Developing
and verifying novel digital health approaches to support the effective detection
and diagnosis of lung diseases are hence an important step in order to improve
the outcomes for affected patients.

Stethoscopes are widely used worldwide as a non-invasive method for the
analysis of lung sounds. They enable medical staff to diagnose possible diseases
by auscultation of the lungs (and potentially other organs as for example the
heart). The use of stethoscope for medical diagnosis is not only suitable for a
wide range of people, but also can quickly obtain test results, thereby winning
precious time for patient treatment. However, the use of a stethoscope is very
dependent on the doctor’s individual hearing abilities and clinical experience. If
the diagnosis results are not accurate enough, it may lead to incalculable conse-
quences. Therefore, it is our research purpose to apply machine learning methods
on the existing respiratory system sound database to obtain more accurate re-
sults in the future diagnosis of respiratory diseases. This cannot only provide
general practitioners with machine-aided analysis of diagnostic data from expe-
rienced doctors, but may also provide a valuable digital health tool for patients
in remote areas or in home environments due to the feasibility of conducting a
diagnosis remotely.

1.1 Our Contribution

This work uses a transfer learning approach to apply Wavegram Logmel CNN
[13] trained based on Audioset [14] to the ICBHI dataset [2] and save snapshots
[15] of the model at different stages as the learning rate changes. In the pre-
processing phase of the data, we provide several data augmentation methods:
splitting and padding, nlpaug library [11], rollAudio and mixup [12] and compare
their effects on the model performance to select the best model configuration. In
a 4-classification task containing respiratory sounds of normal, crackle, wheeze
and both, the prediction results of the ensemble model obtained by our transfer
learning system after 10-fold cross validation achieved a score of 81.1%, outper-
forming previous methods. Based on the demographic information provided by
ICBHI [2], we investigated the distribution of the dataset in terms of gender, age
and BMI. The model scores of the female test group and the male test group
based on normal/abnormal respiratory cycle were 85.5% and 81.1%, respectively.
To reduce discrimination in the male test group due to the uneven distribution
of the dataset, we used a restricted mixup approach to reduce the difference in
model scores between the male and female test groups to 0.82%.

1.2 Outline of this paper

The paper is outlined as follows. Section 2 describes research work on the classifi-
cation task of the ICBHI respiratory sound database. The proposed methodology,
introduction of ICBHI dataset, official evaluation methods, preprocessing, trans-
fer learning and ensembling steps are depicted in Section 3. Section 4 presents the
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experiments and results on the proposed transfer learning system. We conclude
this work and identify future directions in Section 5.

2 Related Work

In recent years, machine learning has been widely used in the classification of
the respiratory system sound database ICBHI [2]. The sound data enters the
classifier after different preprocessing methods, and the prediction of the cate-
gory to which the data belongs is realized through the learning of parameters.
The boosted tree model proposed by [3] takes all the features as input and
performs multiple iterations to achieve the prediction of breathing cycle. The
LungBRN model [4] simultaneously receives the features obtained by the two
preprocessing methods, trains them in the Resnet network respectively, and fi-
nally multiplies them in the fully connected layer. [5] combines transfer learning
(VGG16 pretrained model) and SVM algorithm. In addition, Recurrent Neural
Networks (RNNs) have also been used in some works [6–8] for respiratory cycle
classification problems.

In contrast to research works [4, 5, 10] that used neural networks pre-trained
on the large-scale visual database Imagenet [9], the proposed transfer learning
system applies the neural network pre-trained on the large-scale audio dataset
google audioset [14] containing 527 sound categories [13], thus enabling the down-
stream task to learn audio features faster. In the preprocessing stage, prepro-
cessing methods that have performed well in other tasks such as [6, 17, 20] are
used in our respiratory sound classification task. Table 3 shows the comparison
between our work and some research works with the same dataset division ratio.
In addition, this work investigates the distribution of the dataset on gender, age
and BMI, and tests the performance differences of the neural network model
on uneven datasets. As an example of uneven datasets due to the gender of the
subjects, we propose a restricted mixup approach to reduce the resulting discrim-
ination of the model against the male test group. To the best of our knowledge,
this work is the first research on the respiratory sound database ICBHI to analyse
network model performance based on demographic information.

3 Methodology

This section begins with a detailed description of the ICBHI dataset and the
corresponding evaluation criteria. The general approach of our system based on
google audioset’s pre-trained model Wavegram Logmel CNN [13, 14] to achieve
classification prediction of respiratory cycles on normal, crackle, wheeze and
both. The proposed system is shown in Figure 1, including different preprocessing
methods for the respiratory cycles, transfer learning of Wavegram Logmel CNN
[13] and taking model snapshots at different local minima. The details of the
transfer learning system are described in the following subsections.
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Fig. 1. Workflow of training and testing process on the ICBHI dataset

3.1 Dataset

The ICBHI Scientific Challenge database [2] is a publicly available respiratory
sound database that is tested through scientific challenges, thus enabling digital
auscultation based on its usability in terms of data and algorithms. This respira-
tory sound database consists of 920 annotated audio samples from 126 subjects
with data categories labeled by respiratory experts as: normal, wheeze, crackle,
and both (wheeze and crackle). Each audio sample can be divided into multi-
ple respiratory cycles based on annotation and may contain multiple categories.
The database contains a total of 6898 respiratory cycles, of which 1864 contain
crackles, 886 contain wheezes, 506 contain both, and the rest are normal. In
addition, a large number of samples in the database contain noise, which makes
the data classification problem closer to a real-life scenario. Figure 2 shows mel-
spectrograms of four representative respiratory cycles from the same subject,
belonging to four data categories (normal, wheezing, crackles and both).

3.2 Evaluation method and criteria

The evaluation method in this work uses the widely used officially proposed
criteria. For the four classification (normal (N), crackle (C), wheeze (W) and
both (B)) problems, the three measures Sensitivity (Se), Specificity (Sp) and
Score (Sc) are defined as follows,

Se =
Ccorrect +Wcorrect +Bcorrect

Ctotal +Wtotal +Btotal
(1)

Sp =
Ncorrect

Ntotal
(2)

Sc = (
Se+ Sp

2
) ∗ 100 (3)
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Fig. 2. Mel-spectrograms of different classes of respiratory cycles. (a) Normal (b)
Crackle (c) Wheeze (d) Both
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where i correct and i total denote the number of correctly classified respiratory
cycles and the total number of respiratory cycles contained in the class when
i ∈ {N,C,B,W}.

3.3 Preprocessing

To facilitate the preprocessing of continuous audio signals in the neural net-
work workflow, the librosa library [16] reads sound files and samples them as
discrete audio signals at 16 kHz. The sampled data are divided into different
respiratory cycles according to the corresponding annotated data and identified
to the category (0-3) they belong to. The data for each respiratory cycle are
classified according to “data”, “start”, “end”, “label”, “cycle” and “filename”
column names (Table 1). The first four columns were used for the whole exper-
iment, i.e., the classification task of the respiratory cycle and the difference in
model performance on test groups by gender. The last column was used for the
second part of the experiment, where the subject index was identified by the
filename corresponding to that respiratory cycle, and thus the subject’s gender
information was obtained from the official demographic information provided.

Table 1. Part of the respiratory cycle information contained in a sound file (file-
name.wav)

Cycle Start(s) End(s) Crackle Wheeze Label

1 1.778 4.032 0 0 0
2 4.032 6.319 1 0 1
3 6.319 8.239 0 1 2
4 8.239 10.075 1 1 3

Before starting the formal neural network training, length alignment, data
augmentation and normalization operations are required. The following section
describes in detail the various data preprocessing methods currently in use.

Splitting and Padding: The respiratory cycle lengths in the ICBHI dataset
ranged from 0.2s to 16.1s, while the input shape of the neural network is
fixed. Considering the length of the pre-trained dataset in [14, 17] and the
performance of the ICBHI dataset trained on different cycle lengths, we set
the length of each cycle of the input neural network to 8s.
When the length of a respiratory cycle is greater than 8s, the respiratory cycle
will be divided into multiple sub-respiratory cycles, which can be achieved
by the framing function of the librosa library [16]. The frame length is set
to 8s and the hop length of the frame is 4s. The frame will be displaced in
the direction of the respiratory cycle length until the remaining respiratory
cycle length does not satisfy the frame length, thus different frames (sub-
respiratory cycles) can be obtained.
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When the length of a certain respiratory cycle is less than 8s, that respiratory
cycle will be repeatedly spliced along the length direction until it is greater
than or equal to 8s.
Data Augmentation: In the data preparation phase, a randomly ordered
data augmentation combination is formulated, which contains the NoiseAug,
SpeedAug, LoudnessAug, VtlpAug and PitchAug methods from the nlpaug
library [11]. The augmented data are processed according to the rollAudio
method in Table 2. A random index is generated based on the cycle length,
and the data is rolled from this index until it returns to the previous bit of
this index.

Table 2. Comparison of arbitrary respiratory cycle before and after rollAudio operation
(3 is the generated random index)

Before 2 3 5 7 11 13 17 19

After 7 11 13 17 19 2 3 5

Index 0 1 2 3 4 5 6 7

mixup [12] augments the dataset by mixing random respiratory cycles over
a certain respiratory cycle according to mixingproportion = (λ : 1 − λ)
over the range of the dataset. λ is generated by beta distribution, a set
of continuous probability distributions (Equation 4) defined on the (0, 1)
interval, by setting alpha and beta and thus controlling the interpolation
intensity between two respiratory cycles. For α, β ∈ (0,∞)

λ ∝ Beta(α, β), (4)

Since this probabilistic event mixup occurs on a pair of respiratory cycles,
the interpolated intensity distributions of the two respiratory cycles in mixup
are equal in the absence of constraints such as data weights. The beta distri-
bution is uniform only when α = β and λ is symmetric on x = 0.5. Referring
to the experiments of [12], we set both α and β in the beta distribution equal
to 0.2 so that the λ used in equations (5) and (6) can be calculated.

x̃ = λxi + (1− λ)xj (5)

ỹ = λyi + (1− λ)yj (6)

(xi, yi) are the inputs and targets of the original cycle, respectively, and the
inputs and targets of the random cycles involved in the mixup operation are
(xj , yj), respectively. The results returned by equations (4) and (5) will be
used as the inputs of the neural network.
Normalization: If the original data is used directly, the data of different
orders of magnitude will have different effects on the analysis results. The
data of the larger order of magnitude will weaken the effect of the data of
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the smaller order of magnitude in the analysis, which is not the result we
want to see. The data processed by Z-score normalization have a mean of 0
and a variance of 1, which are on the same order of magnitude.
The mean and standard deviation corresponding to each respiratory cycle
are calculated separately and averaged over the entire dataset. For any data
point x we obtain,

x′ =
x− µ

δ
(7)

where µ is the mean of all sample data, and δ is the standard deviation of
all sample data,

3.4 Transfer Learning

Transfer learning can apply the trained model to a new but related field, thus
the convergence of the model can be completed faster with less training cost in
the absence of annotated data. The transfer learning model used in this paper
is loaded with the parameters of the Wavegram Logmel CNN [13] trained on
Audioset [14] and fine-tuned. After activation function log softmax the prediction
results of respiratory cycle on four classifications normal, crackle, wheeze and
both are obtained. The input original waveform is trained separately on the
two branches and the merged result goes through 5 dropout layers and 5 block
operations containing conv2d, batchNorm2d, relu and avg pool2d.

More precisely, the branches proceed as follows:

Branch1: After the data is processed by Conv1d with a kernel size of 11 and
BatchNorm1d, it goes through three blocks containing conv1d, batchNorm1d,
relu and max pool1d.
Branch2: The 8s audio data is subjected to Fourier short-time transform
and 64 Mel bins to generate a 701x64 Mel spectrogram. The spectrum is
output after a block operation including conv2d, batchNorm2d, relu and
avg pool2d.

3.5 Snapshot Ensemble

Snapshot Ensemble [15] is a way to get an ensemble of models from a single train-
ing session without additional training cost. It sets the learning rate as shown in
Figure 3. Whenever the learning rate restarts, the model starts exploring other
local optima and takes model snapshots at different local minima.

Equation 8 shows the mathematical representation of Figure 3, where linit
is the initial learning rate, ei is the i-th epoch in the current cycle, and c is
the cycle length. The function f calculates the learning rate for each epoch as
follows:

f(ei) =
linit
2

· (cos(π · i
c

) + 1) (8)

Figure 3 sets the initial learning rate to 0.01, 50 epochs as a cycle, and a total
of 4 cycles. Considering the memory problem of a single gpu, the test process
can load model snapshots on several gpus and the results obtained are averaged
on the same gpu.
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Fig. 3. Learning rate with the current epoch used in the training process

4 Experiments and results

The transfer learning system proposed in this paper is used to solve three tasks:
1) To investigate the effect of different experimental setups on model scores and
to compare our work with other works on four classifications of respiratory cycles
(normal, crackles, wheezes and both crackles and wheezes); 2) the unbalanced
distribution of the dataset in terms of gender, age and BMI was analyzed with
demographic information provided by ICBHI and the differences in model scores
were validated on the male and female test groups; 3) we proposed a restricted
mixup to reduce the differences in model performance between the male and
female test groups found in the second task.

4.1 Performance comparison

First, respiratory cycles with a sampling frequency of 16kHz are divided into
trainingset and testset according to a ratio of 8:2. We set the baseline of the
transfer learning system without using nlpaug library, rollAudio and mixup for
data augmentation in the data preprocessing. By filling respiratory cycles with 0
(Zeropadding) or extracting only the first 8s of them we can increase or decrease
the length of respiratory cycles to 8s. The baseline uses the SGD optimizer and
cross entropy loss.

Hyperparameters We evaluate the scores of baselines using different learning
rates and batchsizes on the ICBHI dataset. Referring to the batchsize in [13] we
compared its model scores on 16, 32 and 64 (Figure 4). When the batch size
is 32, the model score is 2.0% and 2.9% higher than other 2 options. Figure 5
shows that the model scores at learning rate 0.01 are much higher than those at
learning rates 0.1 and 0.001. And the model scores in the learning rate based on
Equation 8 are higher than the model scores when the learning rate is constant
at 0.01. So we will apply a batchsize of 32 and a learning rate based on Equation
8 to the baseline in the following performance comparison.
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Fig. 4. Comparison of baselines with different batchsize on the testset (epochs = 50,
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Data Preprocessing We focus on the effect of different data preprocessing
methods on the model training and loss functions in Figures 6 and 7. Setting the
epoch to 200, we add the splitting and padding method to the baseline model
identified in the previous subsection, resulting in a 4.3% increase in the model
score. The combination of splitting and padding, mixup has only 0.3% difference
in model score but the loss function has dropped by 29.2%. We found that using
the splitting and padding, mixup and data augmentation combination in the
data preprocessing stage resulted in the smallest loss function and the highest
model score of 80.9%.

0 1 2 3 4
60

70

80

IC
B
H
I
ev
a
lu
a
ti
o
n
cr
it
er
ia
(%

)

Score

Fig. 6. Comparing model performance with different data preprocessing methods (0:
Baseline, 1: SP, 2: SP+rollaudio, 3: SP+mixup, 4: SP+mixup+DA Group) on the test
set(epochs = 200, bs = 32)

Snapshot Ensemble From Figures 7 and 8 we see the effectiveness of Snapshot
Ensemble in the respiratory cycle 4-classification task. Also, we verify that the
data preprocessing scheme with the best performance in the previous subsection
still has the highest model score (82.0%) and the smallest loss function value
(0.513) after Snapshot Ensemble.

Comparison to other works The most suitable configuration is selected by
comparing the performance of our transfer learning system on hyperparameters,
data preprocessing and snapshot ensemble in section 4.1. This section compares
the model scores of the transfer learning system after a 10-fold cross validation
against other work.

The results in table 3 show that our transfer learning system outperforms
competitors on all three evaluation criteria. The RNN-based end-to-end model



12 Mohan Xu and Lena Wiese

0 1 2 3 4
0.4

0.6

0.8

1

L
o
ss

fu
n
ct
io
n
va
lu
e

No snapshot ensemble Snapshot ensemble

Fig. 7. Compare the loss function values of different data preprocessing methods (0:
Baseline, 1: SP, 2: SP+rollaudio, 3: SP+mixup, 4: SP+mixup+DA Group) before and
after snapshot ensemble
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snapshot ensemble
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Table 3. ICBHI Challenge Comparison (on four categories)

Method Se(%) Sp(%) Sc(%)

NMRNN [7] 56.0 73.6 64.8
RespireNet [17] 53.7 83.3 68.5
STFT+Wavelet [18] 55.3 83.3 69.3
Hybrid CNN-RNN [8] 56.9 86.7 71.8
LSTM [6] 62.0 85.0 74.0
MBTCNSE [19] 65.3 86.1 75.7
CNN(snapshot ensemble)[20] 69.4 87.3 78.4
Our System 70.5 91.7 81.1

architecture adopted in [7] detects abnormal sounds in the respiratory cycle
through masking of noise. [17] adopted the data processing method of device
specific fine-tuning, concatenation-based augmentation, blank region clipping,
and smart padding and realized the respiratory cycle classification task based
on a simple CNN. [18] used STFT and wavelet to extract features and input them
into the support vector machine. [6] established a learning framework based on
recurrent neural networks to discover time-dependent patterns from sound data.
Both [8, 19] completed training on a hybrid neural network: the former added
a Bi-LSTM layer for learning temporal features to CNN, and the latter inte-
grated multi-branch temporal convolutional network and squeeze-and-excitation
network. [20], which is the closest to us in terms of experimental methods and ex-
perimental results, also uses the combined method of CNN and snapshot ensem-
ble, but since our transfer learning system uses more diverse data augmentation
methods in data processing (such as random combination of augmentation meth-
ods and mixup), using pre-trained network parameters on the large-scale sound
dataset Google audioset [14]. Our transfer learning system achieves a score of
81.1% on the test set when compared with other state-of-the-art systems, which
is obviously more advantageous.

4.2 Demographic Data

In this section, we analyze the imbalanced distribution of the respiratory cycle
dataset based on demographic data on the binary classification task (normal and
abnormal). Referring to the labels in Table 1, the normal class includes all nor-
mal respiratory cycles, and the abnormal class includes crackle, wheeze and both
respiratory cycles. The demographic data provided by ICBHI [2] for each partic-
ipant were arranged in order of age, gender, BMI, child weight and child height.
Considering that there are different classification criteria for children’s BMI [21,
22], we excluded respiratory cycles belonging to children and only analyzed the
imbalance of the ICBHI dataset on the demographic data age, gender and BMI
of adults. We also excluded information on some subjects due to missing age,
gender or BMI. After the above two rounds of filtering the dataset contains 6004
respiratory cycles
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Table 4.Distribution and overall percentage of subjects’ gender on binary classification
task (normal and abnormal) corresponding to the respiratory cycle dataset

Normal Abnormal

Female Male Female Male

929 2018 1065 1992
15.47% 33.61% 17.74% 33.18%

Table 4 summarizes the data distribution of the respiratory cycle dataset
based on different genders when performing the binary classification task. In the
normal and abnormal data distributions, males have 18.14% and 15.44% higher
than females in the dataset, respectively.

Table 5. Distribution and overall percentage of subjects’ age on binary classification
task (normal and abnormal) corresponding to the respiratory cycle dataset

Normal Abnormal

Adult Senior Adult Senior

500 2447 448 2609
8.33% 40.76% 7.46% 43.45%

We classified subjects aged greater than or equal to 18 years but less than
60 years and those aged greater than or equal to 60 years as adults and seniors,
respectively. In Table 5, it is shown that in the respiratory cycle judged as normal,
the data for the senior were 4.89 times higher than the data for adults; in the
respiratory cycle judged as abnormal, the data for the senior were 5.82 times
higher than the data for adults.

Table 6. Distribution and overall percentage of subjects’ BMI on binary classification
task (normal and abnormal) corresponding to the respiratory cycle dataset

Normal Abnormal

Under Normal Over Obesity Under Normal Over Obesity

135 767 1393 652 596 728 1143 590
2.25% 12.77% 23.20% 10.86% 9.93% 12.13% 19.04% 9.83%

According to the BMI we divided the subjects into underweight (BMI <
18.5), normalweight (18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30) and
obesity (BMI ≥ 30). Table 6 shows that the underweight and overweight groups
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had the smallest (2.25%) and the largest (23.20%) data distribution in the normal
category; the obesity and overweight groups had the smallest (9.83%) and the
largest (19.04%) data distribution in the abnormal category, respectively.

From tables 4-6, we can see that the subgroups based on demographic data
age, gender and BMI, respectively, are unevenly distributed in the binary-classes
dataset. Table 7 is based on the summary of tables 4-6. The dataset containing
6004 respiratory cycles can be divided into 32 different attributes based on the
three demographic variables gender, age, BMI, and respiratory cycle labels. In
studying the differences between female and male transfer learning system, we
divided the data corresponding to each attribute into the training-, validation-,
and testsets sequentially in the ratio of 72:8:20 to avoid the uneven distribution
of the dataset aggravated by the random division.

Table 7. In the binary classification task (normal and abnormal), the uneven distribu-
tion of the respiratory cycle dataset on the three demographic variables of gender, age
and BMI, each row corresponds to underweight, normalweight, overweight and obesity.

Normal Abnormal

Female Male Female Male

Adult Senior Adult Senior Adult Senior Adult Senior

underweight 7 80 0 48 0 427 0 169
normalweight 225 115 76 351 238 37 105 348
overweight 16 259 56 1062 15 142 2 984
obesity 0 227 120 305 0 206 88 296

4.3 Comparison of model performance based on subject gender

In this section, three experiments will be conducted based on no mixup, using
global mixup and using restricted Mixup, so as to compare the difference in
scores of the transfer learning system on the female test group and the male
test group (Figure 9) and to ameliorate the discriminatory effect on a particular
gender due to training the model on an unbalanced dataset.

In the first experiment, the transfer learning system inherits the best con-
figuration of the model from section 4.1, but does not use mixup for data aug-
mentation in the data preprocessing phase. As known from Figure 9, the model
scored 4.44% lower on the male test group than on the female test group. Thus,
respiratory cycles from males are less likely to be correctly classified than those
from females.

Based on the findings of the first experiment we used mixup in the global
scope to perform online data augmentation. Referring to Equation 5,6, we ran-
domly selected respiratory cycle xj across the entire dataset and fused it with
the original respiratory cycle xi in a ratio of (1−λ) to λ, where λ is from the beta



16 Mohan Xu and Lena Wiese

distribution. The transfer learning system with the addition of global Mixup in-
creased the score on the male testset by 0.86%, but still scored 3.53% lower than
the female testset.

Considering the positive impact of the second experiment, we continued
mixup’s method in the third experiment but added the restriction. For G1, G2 ∈
(female,male) there are the following formulas,

x̃ = λxG1,i
+ (1− λ)xG2,j

(9)

ỹ = λyG1,i + (1− λ)yG2,j (10)

xG1,i
and yG1,i

are the input and target of the original respiratory cycle from
the subject with gender G1; the input and target of the random cycle for mixup
are xG2,j

and yG2,j
from the subject with gender G2. The two subjects differ in

gender (G1 ̸= G2). The results returned by Equations (9, 10) will be used as the
input to the neural network.

The transfer learning system with the addition of gender discrimination-
aware mixup scored 2.6% higher on the male testset than in the first experiment,
and the difference in scores with the female testset was reduced to 0.82%. This
shows that adding the restriction to mixup can effectively reduce the difference
in model performance on the male and female testsets due to the unbalanced
dataset and reduce the discriminatory effect of the model on the male testset.
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Fig. 9. Comparison of the transfer learning system scores on the female test group and
the male test group under different mixup settings
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5 Conclusion and future work

Our proposed transfer learning system implements the respiratory cycle 4-classi-
fication task (normal, crackle, wheeze or both) in the Respiratory Sound database
ICBHI [2] and achieves a score of 81.1% using the evaluation method provided
by ICBHI Challenge. After comparing the performance of the transfer learn-
ing system based on the pre-trained model Wavegram Logmel CNN [13] with
different hyperparameters, data preprocessing methods and model ensembling,
we selected the best model configuration that outperformed almost all state-
of-the-art systems. In addition, we also discuss the uneven distribution of the
respiratory cycle dataset on the gender, age and BMI of the subjects according
to the 2-classification task (normal or abnormal respiratory cycle) and validate
the 4.44% difference in their scores on the female testset compared to the male
testset. For the discriminatory effect of the transfer learning system on the male
testset, we explored different mixup methods in the data preprocessing phase
and proposed a restricted mixup method to reduce this difference to 0.82%.

In the future work, how to utilize the demographic information corresponding
to the respiratory cycle will be the focus of our research. Therefore, the following
questions are worth further exploration in this study. (1) Considering the inclu-
sion of subject demographic information (gender, age, and BMI) in the training
workflow, how will these information affect the model performance; (2) Due to
the uneven distribution of demographic information (gender, age, and BMI) in
the respiratory cycle dataset (Table 7), whether the model performance also
varies across age and BMI groups. What is the effect of the proposed restricted
mixup method in the third experiment on the model performance trained on dif-
ferent age or BMI groups; (3) Whether the proposed restricted mixup method
can improve the classification accuracy of the entire dataset.
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