UniAdapt: Universal Adaption of Replication and Indexes in
Distributed RDF Triples Stores

Ahmed Al-Ghezi
ahmed.al-ghezi@cs.uni-goettingen.de
Institute of Computer Science, University of Gottingen

ABSTRACT

The Resource Description Framework (RDF), which has become the
standard data model to represent web data, is facing the exploding
size of the web resources leading to difficulties in terms of main-
taining and querying the data. Distributed RDF triple stores and
their storage layers were already under research for a decade. While
multiple systems tried to employ the workload to guide partitioning
and replicating the data set, they are not able to find optimal levels
for both the replication and local index storage as well as the main
memory cached indexes.

In this paper we propose our novel unified optimization approach
that enables a distributed RDF triple store to adapt its RDF storage
layer in two aspects: the first aspect considers replication indexes,
while the second aspect considers secondary and main memory
indexes. Our system can dynamically analyze the workload, detect
its queries trends, measure their effectiveness and apply them in
triples’ benefit functions. The system uses those functions to make
fully automated decisions by either horizontally expanding each
node’s secondary storage by replication, or by vertically building
more indexes. In the same context the system makes horizontal or
vertical decisions about working nodes’ main memory. The final
objective of the optimization process is to decrease future query
execution time.

CCS CONCEPTS

+ Information systems — Parallel and distributed DBMSs;
Resource Description Framework (RDF); Storage replication.

KEYWORDS

Resource Description Framework, distributed triple store, workload
space adaption

ACM Reference Format:

Ahmed Al-Ghezi and Lena Wiese. 2019. UniAdapt: Universal Adaption of
Replication and Indexes in Distributed RDF Triples Stores. In The Interna-
tional Workshop on Semantic Big Data (SBD’19), July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3323878.3325803

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBD’19, July 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6766-0/19/07...$15.00
https://doi.org/10.1145/3323878.3325803

Lena Wiese
wiese@cs.uni-goettingen.de
Institute of Computer Science, University of Gottingen

1 INTRODUCTION

The Resource Description Framework (RDF) is considered the stan-
dard model to represent the web data by describing their relations
and semantics. The big scale and high heterogeneity of the web
data is directly reflected in the requirements of the RDF triple store
which is expected to maintain, process and efficiently query RDF
data. Every “thing” or resource on the web can be described by a set
of RDF triples, where each triple is in the form of (subject, predicate,
object). The subject is any certain web resource, the predicate is
relating that resource to an object, which in turn is modeling either
another web resource or a fixed constant. The scale of current RDF
triples is in the ranges of tens of billions, while some commercial
RDF data sets have already reported going beyond 1 trillion triples
[3]. Efficiently evaluating a SPARQL query over such a big data set
goes beyond the capacity of central systems. However, maintaining
the RDF data in a distributed environment raises new challenges
with respect to partitioning, fragmentation and allocation of the
RDF graph. The general objective of the previous operations is
to avoid moving data across the network during query execution.
However, given the complexity of the web resources’ relations that
are embedded in RDF data, the previous operations face complex
problems. In this regard, a forth operation is required which is
replication. Given the fact that replication requires more storage
space, more questions arise: how much to replicate? and what to
replicate?

Some works tried to answer the second question by focusing on
saving storage space like WARP [5]; others acted more federated
in this regard like Huang [6]. However, the practical value for any
space constraint that should be imposed by the system on repli-
cations should be dynamic with respect to the availability of the
storage space. This is because space availability is tightly related to
the degree of space consumption by other highly needed system’s
structures especially the indexes.

Indexes are crucial structures for RDF. There are two basic struc-
tures of RDF indexes: hashed and sorted. The sorted one is more
compact and flexible but typically slightly slower. What defines the
index type is the triple elements that form the key. For example,
in the sorted SPO index, triples are sorted first on subject, then on
predicate, and finally on object. Based on this, the SPO can find the
triples if their subject is known, or if their subject and predicate
are known. Any practical RDF store should have at least two types
of indexes where the subject and object can be used as first order
keys.

Increasing the number of indexes would serve the performance and
flexibility in executing queries, but requires more storage space.
Basically a new full index could require storing a whole fresh copy
of all triples in the data set. The Hexastore [12] and RDF3x [10]
adopted the whole of six indexes representing the 3! combinations

https://doi.org/10.1145/3323878.3325803
https://doi.org/10.1145/3323878.3325803
https://doi.org/10.1145/3323878.3325803

SBD’19, July 5, 2019, Amsterdam, Netherlands

of subject, predicate, and object. However, many other works con-
sidered such an indexing scheme a too huge consumption to storage
space, and adopted a smaller set of indexes upon empirical obser-
vations to some workload samples.

Given that the constraint which limits building more indexes is
the storage space, and that the optimal types of the indexes is rec-
ognized based on the workload, we can identify an optimization
problem that aims to minimize the query execution time. Moreover,
we can identify also the strong relation of this problem to the sys-
tem’s adaption for a proper replication amount, since they share
the same storage space constraint as we have introduced earlier.
The storage space adaption is also extended to the main memory,
as it is a much faster but smaller version of storage space. Given
the expected big size of an RDF data set, the secondary storage is
the practical place to store the data and its indexes. However, the
usual SPARQL query workloads do not target all parts of the RDF
graph evenly. In many cases, a workload may target only small hot
spot of the data set [11]. Thus, the ability of the system to detect
hot spots in the RDF graph and cache them in main memory would
extremely enhance the performance. To summarize and formalize
the problem that we are targeting in this work:

We are given a distributed RDF triple store with n federated work-
ing nodes. Each node has s; bytes of secondary storage, and m;
bytes of main memory storage. We investigate how each node can
make automated decisions about the following:

e The amount of secondary storage space assigned for repli-
cation s,, and for indexes sy; as well as the parts of data to
replicate and parts of the data to put in each index.

o The parts of the data to load into main memory m;, and the
types of indexes that are optimal to contain them.

In order for the system to make the given optimized decisions for
sake of better performance, it needs measurable expected benefits
of data triples to a future query. The workload history has been
effectively used in different data processing systems to anticipate
users’ future queries. Recently, SPARQL workload also gained at-
tention in optimizing the storage layer in RDF triple stores [3-5].
The general direction is to detect frequent patterns, then assign
higher priority for triples answering those patterns. However, such
approaches assume previous knowledge about the data set and
queries, besides they don’t consider the space as the optimization
constraint, which leads to unbounded behaviour with respect to dif-
ferent levels of space availability. Based on the above we summarize
our contributions as follows:

e We present in this work a dynamic and fully adaptable novel
approach to detect related frequent patterns that is indepen-
dent of the data set and workload types, their quantity and
their quality.

e We formalize dynamic triples benefit functions based on a
mining approach, that allows the system to adapt its replica-
tion, secondary storage and main memory index schemes.

The rest of this paper is structured as follows: in the next section,
we formalize our definition of the RDF graph and queries workload.
In Section 3, we describe our method to detect workload trends
using heat queries, and derive formulas for expected triples access
rates. In Section 4, we derive the benefit functions on the level
of triples and indexes, and use them to perform the optimization

Al-Ghezi and Wiese.

process in Section 5. We mention the most related work in Section
6 and provide experimental evaluation in Section 7. Finally we state
our conclusion in Section 8.

2 PRELIMINARIES

Definition 2.1 (RDF Graph). Let G = {V, E, P} be a graph repre-
senting the RDF data set. V is a set of all the subjects and objects
in the set of RDF triples D; E C V X V is a set of directed edges
representing all the triples in the data set; P is a set of all the
edge labels in the RDF data, and we denote p, as the property
associated with edge e € E. The RDF data set is then defined as
D = {(s,pe,0) | Je = (s,0) : e € EApe € P}.

Definition 2.2 (Queries Workload, Query Answer). A query q is a
set of triple patterns {t1, t2, ..., tp }; each triple pattern (5, p,0) € q
has at least one but not more than two constants, while the rest are
variables. This set composes a query graph qg. The query answer
qa is the set of all sub-graphs in RDF graph G that match the query
graph and substitute the corresponding variables. A workload is
defined as a set: Q = {(q1, f1), (92, f2)s --» (@m> fm)}, where g; is a
SPARQL query, and f; is the frequency of its appearance in the
workload. The workload answer Qy, is the set of the query answers
of Q. The length of query q is the maximum distance between any
two vertices in its graph g¢.

3 WORKLOAD TRENDS

The idea of detecting frequent patterns in a SPARQL workload was
first used by Partout [3], then it was extended and used by multiple
works like [1, 5, 11]. In [4], a so-called heat map is derived essentially
from frequent patterns but with better modelling for frequencies
and relations to future queries. We further extend the idea into heat
queries, where related queries can be connected, information about
patterns’ direction are recorded and used to derive indexes usage
and benefit. Moreover, we produce a more general version of a heat
query by performing anonymization on its vertices, which allows
its projection on more parts of the RDF graph as explained in the
next subsection.

3.1 Heat Queries

Given a workload Q and an RDF graph G, we would like to find
the probability of a vertex v € V to contribute to a future query
q. During the accumulative building of the workload, each time a
query is executed, we mark the vertices in G that are part of its
answer as hg C G and refer to hq as the heat query. The vertices
of hq record two pieces of information: the count of this query
as frequency or heat value, and the count of each index used (or
to be used if the system doesn’t have yet the optimal index for
executing this query). If the answers of any two queries share one
or more vertices, they would have their heat query combined into
a single bigger heat query, such that the shared vertices would
be hotter by getting the summation of heats of both heat queries.
Figure 1 illustrates the proposed heat query evolution. The heat
query would be bigger in size with more workload queries get
combined independent of their order. To detect other parts of the
RDF graph that give the same query trend as a certain heat query
hg, it needs to be “anonymized” by replacing all of its vertices with
variables while keeping the properties (or the predicates). Similar

UniAdapt: Universal Adaption in Distributed RDF Triples Stores

Q1 Ang:m-'r: N Evolving Heat Query

—’_b Cs | C1 |£1'| Co Iﬂi.l Cs |
o

Q2 Answer:

P2
- C
™ a |C1|£1’|CzlEZ>|CS|
P D

3

3
o B cBcs] [co B
P3 3

[2x: [53 [oxe 3 [oxs| [2xa} 53]
Anonymized Heat Query P

?X6

Q3 Answer:

P2
| Cs g C7
P3

Figure 1: Heat Query Evolving from three Queries

approaches are used by [3] and WARP [5] to normalize a workload.
The anonymized heat query can now be projected to other parts
of the graph G, which allows us to detect similar queries trends.
However, those trends are detected after anonymization, which
raises the question: to what extent are the detected trends expected
to contribute to any future queries? We denote this expectation
as the effectiveness of the anonymized heat query. In order to
enable the system to have real adaption with the workload, we
don’t assume fixed factors about the heat map distribution, but in
contrast, we measure the effectiveness of any heat query hq to the
extent that hg is being repeated in the workload.

The count of sub-graphs that match an anonymized heat query
hq is its frequency freq(hg). The value of freq(h,) gives us an impor-
tant numerical measurement for the effectiveness of h4. The higher
freq(hg) the more we expect hq to contribute in future queries:

effective(hg) = 1 (1)

~ freq(ha)

if H represents a set of all anonymized heat queries in the system
so far, then we can define Hy(v) which returns for any v € V the
heat query that v is associated with, or null if v does not belong to
any heat query.

3.2 Formulating Triples Access Rate

In this section, we find the triple access rate, and use it to derive
the benefit functions in Section 4. Given a query q that is to be
executed on RDF graph G, the probability of a any vertex v € V to
be part of the query answer g, is uniformly given by:

_ |94l
p(v) = Vi

But when we take previous workload w into consideration, there
is a frequency of appearance per vertex. Thus the above probability

SBD’19, July 5, 2019, Amsterdam, Netherlands

can be changed to:

freq(v)

S freq(on) @
You; eV

pw(v) =

To keep the math compact, we assume a length of query answer
equal to one. The value of p,, (v) represents the usage factor or rate
of access of v by the its frequency in the heat query. The rate of
access of v as expected by the anonymized heat query is then given
by:

freq(Hq(v), v) - effective(Hg(v))
)y Vfreq(vi)

Yv; €

®)

access(v) =

where: freq(h, v) is the frequency of v as given by the anonymized
heat query h.

access(v) in Formula 3 can be separately specified for each cer-
tain index type, by specifying the index type in freq(h, v, index):

freq(Hg(v), v, index) - effective(Hg(v))
Y freq(vi)

Vou;eV

4 OPTIMIZING STORAGE FOR INDEXES,
REPLICATIONS, AND CACHING

The heat query set defined in Section 3 provides information about
the index usage in the previous workload. The anonymization and
projection on the RDF graphs reflects further the trend of workload
usage of the system’s indexes. In this section we require the system
to measure the benefit of having a vertex v in a certain index type
x; and v can be in a node’s secondary storage, main memory or in
a remote node. The benefits formulas of this section will be used
further in the optimization process in Section 5.

access(v, index) =

©

4.1 Measuring Index Benefit

The query optimizer receives a query and selects the best indexes to
use out of its set of available indexes according to the query shape.
If the optimal index is not available, the optimizer would use the
nearest available index and issue a conversion plan that includes
an extra filter. The cost of this conversation is related to the cost
of the extra filter: the benefit of having the optimal index available
per single access. Each heat query records per vertex the average of
conversion cost from the used index to the optimal index, and the
function conv(x, v) returns the cost for index type x and vertex v.
In order to have the above benefit with respect to the usage of v,
we multiply it by the access function from Formula 4, then we set
the formula for benefit of secondary storage index w;(index, v):

wij(index, v) = access(v, index) - conv(index, v) (5)

4.2 Extending to Main Memory Benefits

The fact that the main memory is much faster than the hard disk,
pushes many RDF systems to consider maintaining the whole RDF
data set and indexes in the main memory [4, 14]. However, consid-
ering the huge and explosive size of RDF data, practical systems
should use a hybrid approach - that is, to cache in main memory
the most important parts of data. The workload and its trends play

SBD’19, July 5, 2019, Amsterdam, Netherlands

again the best role of importance recognition in that context. For-
tunately, we can extend our workload trends formulas to support
selecting the most expected parts to contribute in future queries.
However, some key differences should be taken into consideration.
The secondary storage contains at least the SPO and OPS indexes
for each triple. In the main memory the triple may exist in any type
of indexes or does not exist at all. If the triple doesn’t exist in any
main memory index, then the benefit of caching it, is saving the
time difference between accessing a triple in memory and on disk.

wmr(vg) = access(vg) - (6)
where y is the time required to access a triple in memory.
On the other hand, if the triple exists in a main memory index, the
benefit would be the conversation cost towards a more optimal
index.

wim(index, vy,) = access(vm, index) - conv(index, vy) (7)

Since we assumed no given existence of indexes, it could be
that some memory-available indexes cannot be converted to the
required index. For instance, if there is the memory-resident index
SPO, while the required one is the OPS, then the system would
have to use the disk index OPS, and as a result, the conv(index, vy,)
would be much higher. This would produce a higher benefit value
in Formula 7 and hint the optimizer to favour building the required
index which cannot be produced from available indexes.

4.3 Measuring Replication Benefit

A triple store that is distributed on several working nodes, needs
to have its RDF graph partitioned. Each node would then have its
share of data to be stored in the secondary storage in some indexes.
To avoid synchronizing intermediate results, a replication is needed
from the partition border [8]. The border is defined as all the vertices
in the local partition, that have at least one edge coming from, or
going to a remote partition that is located in another working node.
During the execution of a query, any working node may require
access to vertices at some distance from its border. However, this
distance can’t be more than the query length minus 1 (since that
in the worse case the query starts from the partition border). On
average half of the query length would be inside the local partition
while the other half would be in the remote partitions. Thus the
access factor for any vertex at distance d from the border is given
by:
d- 2
averageQueryLength
0 otherwise

if d < maxQueryLength
5(0) = QueryLeng

Accessing a triple which is located in a remote node requires
paying a delay cost proportional to the network delay per triple
denoted as 7. Thus we could rewrite the index benefit function in
Formula 5 for a vertex that is located in a remote node by replac-
ing the index conversion cost with the network access cost, and
multiplying the access by the distance factor:

wr(0r) = access(vy) - 8(vr) - (- A) (8)
where A is the delay of accessing v in the secondary storage using
the optimal index.

Al-Ghezi and Wiese.

5 SYSTEM START-UP AND OPTIMIZATION
PROCESS

In this section we describe how the system starts from scratch, and
how it performs the optimization process for its storage space on
the levels of main memory and secondary storage.

5.1 Starting up

The system contains n working nodes connected by a dedicated
network. A node i has its own m; memory storage and s; secondary
storage. The data set is one or multiple RDF files that can be down-
loaded at any node. The single RDF graph is partitioned into n
partitions using METIS [9]. If one node cannot hold the whole data
set, the partitioning node can still generate the METIS graph file,
which is a relatively small text file containing only lines of num-
bers. Each line represents a vertex, and each number at that line
represents the vertex that has an edge to this vertex. This file is
much smaller in size than the original textual data set, and can
be maintained by any node given that there is no index built at
this point. At the end of this step each node will have its own data
partition, besides a dictionary which maps the textual elements in
the data set to compact integer code numbers. These codes will be
used to convert the data set into two initial indexes: SPO and OPS.
After having those indexes ready, the original data set files are no
longer required and can be safely deleted.

5.2 Building The Workload

The system has the option to supply an initial set of queries to
build initial workload, or start totally from scratch and build the
workload from the received queries. After executing each query, the
system saves it with its result to a temporary buffer, and continues
executing any further query waiting in the queue. If the query
queue is empty, the system would trigger the workload module
which processes the temporary buffer and builds or updates the
heat queries as stated in Section 3. If both of the temporary and
queries queues are empty, the system triggers the optimization
module. This module has two levels of execution as explained in
the following sub-section.

5.3 Filling The Main Memory and Secondary
Storage

The optimizer module makes sure that the main memory space is
always filled with the parts of the data that are most expected to
contribute in the next queries’ execution. Given m bytes of main
memory, there are always two options to fill them. Either to have
triples from secondary storage cached into one type of indexes,
or to replicate triples which are already in a main-memory index
into another index. For this purpose, the optimizer maintains two
limited-size priority queues, one for the disk resident vertices, and
has conceptually the vertices ordered descendingly by their disk
benefits as given by Formula 6, and a second queue where the
memory vertices follow Formula 7 to arrange their benefits. A
third priority queue is used to track what has been assigned to
memory, but ordered reversely by benefits in ascendant manner.
The optimizer would then choose greedily a more beneficial element

UniAdapt: Universal Adaption in Distributed RDF Triples Stores

pt_RanMem == UniAdapt WARP

ive Exe. Time (sec)

"
o
ki
b4

E
/4;ff— 3
3
g
I

500 1000 1500 2000
Queires Queires

Figure 3: Adaption with sec-
ond workload level

Figure 2: Adaption with
first workload level

from either the first or second queue, and try to replace the head of
the third queue, if it has less given benefit. The three queues are of
limited size ¢ (100k in our implementation) and contain only the
first ¢ best or worst elements according to their benefit functions. To
avoid performance issues, the priority queue does not fully arrange
itself with each insertion but performs the process on chunks of
buffered elements. For the secondary storage, the optimizer also
maintains three priority queues: the first one for the remote vertices;
the second for local indexes, with priorities determined according
to formulas 8 and 5 respectively; the third for the worst benefit
vertices on indexes disk. The optimizer applies the same eviction
process which has been described earlier for main memory.

6 RELATED WORK

Distributed RDF management systems have been analyzed under
different research questions; see for example the survey in [13]. We
focus in this section on the works that are most related to adaption.
The first workload-aware partitioning was Partout [3]; the authors
change a set of workload queries into a global query graph by
removing non-frequent items. This graph is used to generate min-
terms aiming to keep together the terms which are often queried
together. However, the partitioning needs an initial workload to
start, and it can easily degrade very badly, if the next queries are
dissimilar to the workload queries. WARP [5] tried to avoid this
problem by performing partitioning using static METIS, then using
a workload to select important triples to replicate at the borders
of the partitions. However, the adaption given by WARP is very
limited as it sets a single frequency threshold, and treats equally any
query beyond this threshold. In addition, the performance might
be poor when the workload is small, has low quality, or when the
system has shortage or abundance in storage space. Peng [11] mined
the workload looking for frequent patterns with a concept being
still similar to the Partout min-terms. Chameleon-db [2] used the
workload to minimize the cost of intermediate results joining by
using a decision tree. AdPart [4] partitions the data set by hashing
the subjects of data set triples, and loading the whole data in main
memory. The system monitors the workload and issues an eviction
process upon some thresholds. However, maintaining big data-sets
in main memory might not always feasible in practical systems. In
contrast to all these works, our system exploits all available storage
resources and involves them in a universal adaption approach.

SBD’19, July 5, 2019, Amsterdam, Netherlands

7 EVALUATION

We evaluated our adaptive system on a cluster of 4 working nodes
connected by dedicated network. We used the Billion Triple Chal-
lenge data set (BTC14) [7]. We assumed no workload available at
system start-up, which makes each node follow the what we call
“zero protocol” by partitioning the data using static METIS, per-
forming replication with distance 2 from the partition border, and
using the remaining disk space to build indexes in the order: SPO,
OPS, POS, SOP, OSP, PSO. The main memory caches the indexes in
the same given order to the maximum level as its free size allows.

7.1 Workload Generation

The main objective of our system is to adapt its available storage
with the workload to the best performance of queries execution. It
continuously uses the previous query workload as a training set
to predict the next behaviour. In order to test this adaption and
its behaviour under different workload quality levels, we generate
multiple workloads each with different properties. In this context,
we define the properties of the workload by three parameters:

e Size of queries: defined by two sub-parameters: its volume
which is its vertices count, and the query’s length, which is
the maximum distance (minimum number of hops) found
between any of its vertices.

e Quality level: we denote a workload as having a higher qual-
ity level when it has more obvious detectable trends. For
testing purpose, the generated workload repeats a vertex
from the data set by a rate that follows a normal distribution.
The standard deviation would be the quality metric of the
queries trends within the generated workload. The smaller
is the standard deviation the better are the query trends.

e Rate of arriving: the number of queries per second that the
system receives. We assumed a Poisson distribution to model
the system’s traffic of queries, as it is widely used to model
the traffic received by servers.

7.2 Workload Adaptation

In order to test the system’s adaption towards a stream of work-
load’s queries, we generated two levels of workload. The first has
the best quality with repetition of 40% and standard deviation of 1. A
second level workload is also generated with repetition of 20% and
standard deviation of 4. We tested the adaption of UniAdapt versus
WARP and UniAdapt_RanMem which randomly caches indexes
from the hard disk to main memory. Within the first level workload
in Figure 2, UniAdapt was able to detect the workload trends, and
adapt its memory indexes within the first 700 queries. In lower
workload quality in Figure 3, the UniAdapt tolerates the low quality
of queries’ trends and performs similar to random approach up to
1500 queries, where it starts to show obvious better adaption. The
WARP showed a linear behaviour with respect to both workload
levels but with lower slope when it had better workload allowing
it to better decrease the network communication costs.

7.3 Storage and Workload Adaptation

In this part, we deeply measure the adaption of the system with the
workload on a range of main memory availability. For this purpose,
we define a main-memory to data-set size ratio with range between

SBD’19, July 5, 2019, Amsterdam, Netherlands

2000 = UniAdapt_RanMem [UniAdapt

e —

7 1500

=

@

E — ——

£

£ 1000

P

@

E

=

=]

E

2 500

=z

0

Workload Qualityl 2 3 4 5 6 1 23 45 6 1234568 123456
Mem. Ratio 5% 10% 20% 40%

Figure 4: Adaption to workload with respect to memory
availability

(5%-40%). For each ratio level, we took six levels of workload quality
and aggregated the accumulative execution time of 2500 queries on
UniAdapt and UniAdapt_RanMem. The results of both approaches
are shown in Figure 4 . UniAdapt maintained general shape of
adaption with the workload in all memory levels, and recorded
higher exploiting of memory at 40% ratio. At 5% memory ratio,
UniAdapt was able to decrease the query execution time at higher
workload quality by replicating highly referenced triples in memory
in spite of its limited size with respect to the data set size.

7.4 Replication Adaption

In this part we consider testing the replication which each node
needs to perform at its partition’s border. To have clear evaluation of
this part, we disabled the memory part of UniAdapt and compared
it against an adopted version of WARP. Although WARP has static
and workload-aware replication levels, it doesn’t explicitly describe
setting the amount of this static part. For our testing purpose, we
allow this static part to grow as much as the replication space allows.
Figure 5 shows the replication-layer adaption of two systems with
the workload under the constraints of 4 levels of replication ratio.
The replication ratio is the percentage ratio of replication that a
node can perform to the total required amount. Within the 5%
region, UniAdapt was able to balance its replication’s needs with
its local indexes needs. It made use of the workload and triples’
distance to evaluate their benefits and importance, which is reflected
in its highly shown performance. The adaption of UniAdapt is
still superior in the remaining regions of replication ratio until
the 90% region, where the WARP and UniAdapt shows similar
behaviour, typically because of the high level of replications which
approximately eliminates the needs of any communication.

8 CONCLUSION

In this paper we presented a novel approach that performs uni-
versal storage layer adaptation with the workload and the storage
space. This enables the distributed RDF triples store to efficiently
perform on different data sets types and sizes, and within any re-
sources availability. Our system requires no fixed setting and can

Al-Ghezi and Wiese.

W UniAdapt(no_mem) [WARP

20000
& 15750
E
L8]
E
; 11500
=
2
[-)
=
E
3 -
3 7250
{ | |
. I PRILIRTITITIT
Workload Quality 1 2 3 4 5 6 12 3 456 12 3 456 123 456
Replication Ratio 5% 20% 40% 90%

Figure 5: Adaption of remote replication with workload

automatically settle values to replication and indexing schemes, be-
sides efficiently caching triples to main memory. Our experimental
evaluation supports the highly adaption behavior of our system.

ACKNOWLEDGMENT

The authors would like to thank Deutscher Akademischer Aus-
tauschdienst (DAAD) for providing fund for research on this project.

REFERENCES

[1] AhmedI. A. Al-Ghezi and Lena Wiese. 2018. Adaptive Workload-Based Parti-

tioning and Replication for RDF Graphs. In DEXA.

[2] Giines Aluc, M. Tamer Ozsu, Khuzaima Daudjee, and Olaf Hartig. 2013.

chameleon-db: a Workload-Aware Robust RDF Data Management System. Tech-

nical Report CS-2013-10, University of Waterloo. (09 2013).

Luis Galarraga, Katja Hose, and Ralf Schenkel. 2014. Partout: A Distributed

Engine for Efficient RDF Processing. In Proceedings of the 23rd International

Conference on World Wide Web (WWW ’14 Companion). ACM, New York, NY,

USA, 267-268. https://doi.org/10.1145/2567948.2577302

Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser Ebrahim,

and Majed Sahli. 2016. Accelerating SPARQL Queries by Exploiting Hash-based

Locality and Adaptive Partitioning. The VLDB Journal 25, 3 (June 2016), 355-380.

[5] K.Hose and R. Schenkel. 2013. WARP: Workload-aware replication and parti-

tioning for RDF. In 2013 IEEE 29th International Conference on Data Engineering
Workshops (ICDEW). 1-6. https://doi.org/10.1109/ICDEW.2013.6547414

[6] Jiewen Huang, Daniel J Abadi, and Kun Ren. 2011. Scalable SPARQL querying of

large RDF graphs. Proceedings of the VLDB Endowment 4, 11 (2011), 1123-1134.

Tobias Kafer and Andreas Harth. 2014. Billion Triples Challenge data set. Down-

loaded from http://km.aifb.kit.edu/projects/btc-2014/.

Zoi Kaoudi and Ioana Manolescu. 2015. RDF in the clouds: a survey. The VLDB

Journal 24, 1 (01 Feb 2015), 67-91. https://doi.org/10.1007/s00778-014-0364-z

George Karypis. 2011. METIS and ParMETIS. In Encyclopedia of parallel comput-

ing. Springer, 1117-1124.

[10] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal 19, 1 (01 Feb 2010), 91-113. https:
//doi.org/10.1007/s00778-009-0165-y

[11] P.Peng, L. Zou, L. Chen, and D. Zhao. 2019. Adaptive Distributed RDF Graph
Fragmentation and Allocation based on Query Workload. IEEE Transactions on
Knowledge and Data Engineering 31, 4 (April 2019), 670-685. https://doi.org/10.
1109/TKDE.2018.2841389

[12] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore:
Sextuple Indexing for Semantic Web Data Management. PVLDB 1 (08 2008),
1008-1019. https://doi.org/10.5167/uzh-8938

[13] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr.
2018. RDF Data Storage and Query Processing Schemes: A Survey. ACM Comput.
Surv. 51, 4, Article 84 (Sept. 2018), 36 pages. https://doi.org/10.1145/3177850

[14] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. 2013.
A distributed graph engine for web scale RDF data. In Proceedings of the 39th
international conference on Very Large Data Bases (PVLDB’13). VLDB Endowment,
265-276. http://dl.acm.org/citation.cfm?id=2488329.2488333

B3

=

[4

e’

7

—

[8

-

[

=

https://doi.org/10.1145/2567948.2577302
https://doi.org/10.1109/ICDEW.2013.6547414
https://doi.org/10.1007/s00778-014-0364-z
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1109/TKDE.2018.2841389
https://doi.org/10.1109/TKDE.2018.2841389
https://doi.org/10.5167/uzh-8938
https://doi.org/10.1145/3177850
http://dl.acm.org/citation.cfm?id=2488329.2488333

	Abstract
	1 Introduction
	2 Preliminaries
	3 Workload Trends
	3.1 Heat Queries
	3.2 Formulating Triples Access Rate

	4 Optimizing Storage for Indexes, Replications, and Caching
	4.1 Measuring Index Benefit
	4.2 Extending to Main Memory Benefits
	4.3 Measuring Replication Benefit

	5 System Start-up and Optimization Process
	5.1 Starting up
	5.2 Building The Workload
	5.3 Filling The Main Memory and Secondary Storage

	6 Related Work
	7 Evaluation
	7.1 Workload Generation
	7.2 Workload Adaptation
	7.3 Storage and Workload Adaptation
	7.4 Replication Adaption

	8 Conclusion
	References

