
Filtering of Unrelated Answers in a Cooperative
Query Answering System

Maheen Bakhtyar1,2, Lena Wiese3, Katsumi Inoue4, and Nam Dang5

1 Asian Inst. of Technology Bangkok, Thailand Maheen.Bakhtyar@ait.asia
2 CSIT, University of Balochistan, Pakistan MaheenBakhtyar@um.uob.edu.pk

3 Inst. of CS, University of Göttingen, Germany wiese@cs.uni-goettingen.de
4 National Inst. of Informatics, Tokyo, Japan ki@nii.ac.jp

5 Tokyo Inst. of Technology, Tokyo, Japan namd@de.cs.titech.ac.jp

Abstract. A database system may not always return answers for a
query. Such a query is called a failing query. Under normal circum-
stances, an empty answer would be returned in response to such queries.
Cooperative query answering systems produce generalized and relevant
answers when an exact answer does not exist, by enhancing the query
scope and including a broader range of information. Such systems may
apply various generalization techniques, also referred to as generaliza-
tion operators, to relax certain conditions and obtain related answers.
These answers are not exact but informative answers that potentially
contain some of the information that the user needs. Therefore, we pro-
pose a method to filter out unrelated answers and return only related
answers to the user. We also propose a mechanism to have a restricted
and optimized generalized query space by limiting the number of queries
produced. We determine the similarity between user query and the an-
swer produced. Unrelated answers are pruned out, and only the related
and informative answers are returned to the user.

Keywords: Cooperative Query Answering, Query Relaxation, Seman-
tic Filtering, Unrelated Answers, WordNet, Inductive Conceptual Learn-
ing

1 Introduction

A query with no resulting answer is called a failing query. Cooperative query an-
swering systems produce generalized and relevant results when an exact answer
does not exist by enhancing the query scope and including a broader range of in-
formation. These systems apply various generalization techniques; also referred
to as generalization operators; to relax certain conditions and to obtain related
answers. These answers are not exact but informative that potentially contain
partial information that users need.

Various generalization techniques have been developed to give a wider range
of answers [1–5]. Inoue et al., discuss and analyze the properties of three of the
generalization/relaxation techniques [6]. They also discuss the iterative combi-
nation of the three techniques (called operators).



We can observe that sometimes a number of answers produced after query
generalization are not related to what the user originally asked. The reason is
often that new structures are added to the query when generalizing the query.
Therefore, we propose a framework to determine the similarity between the
user’s original query and the answers produced after query expansion. Unrelated
answers can be pruned out so that only the related and informative answers are
returned to the user.

2 Techniques for Query Generalization in Cooperative
Query Answering Systems

Cooperative query answering systems generalize queries by enhancing the query
scope and including a broader range of information. If the answer to a query
is null, then cooperative query answering relaxes the query, employing various
techniques. Relaxation of the query results in some informative answers instead
of an empty set.

Deductive generalization of queries assists in providing informative answers
to failing queries. Gaasterland et al., provide a formal definition of deductive gen-
eralization [5]. We consider conjunctive queries and the generalization operators
for them. Conjunctive queries contain both positive and negative conjuncts, but
for simplicity, we initially target only queries with positive conjuncts/literals.
See [6] for a definition of a conjunctive query.

A generalization operator is a mechanism to generalize a query to enhance
the query scope. When applied to a set of queries, it produces a set of relaxed
and more general queries. See [6] for the formal definition. We consider three
generalization operators for conjunctive queries and their iterative execution
combined with each other, as discussed by Inoue et al., [6].
The DC operator relaxes a conjunctive query by dropping one of the conjuncts
from the query at a time, making the query less restrictive.
The AI operator adds a new variable in the query and therefore introduces a
more general query. This results in coverage of different values for newly added
variable.
The GR operator allows replacing a sub-part of the failing query with the
head of a rule in the knowledge base Σ (details in [6]). New constants and new
conjuncts (but not variables) are potentially introduced in the generalized query,
possibly removing some of the conjuncts, variables, and constants.

Inoue et al., state that it is sufficient to execute the three operators in a
certain order when iteratively executing generalization steps. The authors apply
the operators in breadth-first manner with the GR operator first, followed by
DC and then AI. In some cases, GR is not applicable so we might apply DC
then AI. When neither GR nor DC is applicable, we may apply only AI.



3 Similarity between User Query and the Returned
Answer

We have discussed that the user may be disappointed if no answer is returned
in response to a query. However, the user may be even more disappointed if
unrelated answers are retrieved and returned in response. For example, if the
query requires a list of hotels in a particular town, but the system provides a
list of hospitals in that town after query generalization, the user would likely be
unhappy, so such cases are best avoided.

Similarity is a general notion of a metric based on the relatedness of two
target inputs (e.g., concepts, terms, or documents). Similarity values are usually
between 0 and 1, where 0 means not similar at all. We propose a method to find
and remove unrelated answers from a set of generalized and expanded results.

In our approach, we make use of syntactic as well as semantic constructs to
compare and match the original query with generalized queries or with answers
obtained in response to those generalized queries. We make use of WordNet6;
in particular, we use the similarity between various concepts in WordNet to
understand semantics and prune out unrelated queries or answers. There are
various methods for measuring similarity between a pair of words, several based
on WordNet. We use the similarity metric by Wu and Palmer [9] to measure
similarity between a pair of words.

To better analyze, we express the operator tree by Inoue et al., in terms of
the regular expression.

(AI)+︸ ︷︷ ︸
I

| (DC)+(AI)∗︸ ︷︷ ︸
II

| (GR)+(DC)∗(AI)∗︸ ︷︷ ︸
III

.

We now examine each branch of the regular expression and develop similarity
metrics for branches with expected dissimilar answers.

3.1 Anti-Instantiating Iteratively (AI)+

The AI operator generates queries having new variables. Therefore, answers re-
trieved after introducing new variables according to a knowledge base may be
unrelated to the original query. These answers might contain information entirely
out of context for the query and the user’s needs. To identify such situations,
after AI execution, we match answers with the original query.

The AI operator and iterations of AI alone neither remove nor introduce
any new predicate symbols. Therefore, the size (the sum of the arities of the
predicates) of the query and the answer formulae should be equal, and it is
possible to keep the answer predicates in the same order as in the query, with

6 WordNet[7, 8] is a lexical database and a useful tool for computational linguistics and
natural language processing(NLP) that contains a formal hierarchical arrangement
of English vocabulary. The concepts are interlinked on the basis of some relationship
such as synonym sets(called synsets).



one-to-one matching of the query predicates and answer predicates. To measure
query-answer similarity for the AI+ branch, we number the occurrences of vari-
ables and constants in a formula. Each such occurrence is called a position. For
example, in the formula ill(mary, X) ∧ ill(peter, X), mary occurs at position
1, X occurs at positions 2 and 4, and peter occurs at position 3. In AI+, the
number of predicates and the size of the parameter tuples in the query and the
answer is equal. Similarity measurement functions are shown in Equations 1 to
6.

The overall similarity SimQAA(q, a) between the generalized query q and a
candidate answer a is show in Equation 1.

SimQAA(q, a) =

m∑
i=1

Simp(i, q, a)

m
,

(1)

Simp(i, q, a) =



1, V (pi(q)) ∧ ¬A(pi(q)).

Simh
wn(i, q, a), V (pi(q)) ∧ A(pi(q))

producing pi(a) ∧ ¬PN(pi(a)).

Simh
pn(i, q, a), V (pi(q)) ∧ A(pi(q))

producing pi(a) ∧ PN(pi(a)).

1, C(pi(q)) ∧ pi(q) = pi(a).

0.5, PN(pi(q)) ∧ pi(q) 6= pi(a).

Simc

(
pi(q), pi(a)

)
, otherwise.

(2)

where, Simp(i, q, a) is the similarity of the parameter (variables or constants)
at position i and m is the total number of positions (sum of arities) in the query
q (or the answer). Let pi(q) be the parameter, i.e., variable or constant, at
the ith position in the query (and for a analogously). We must calculate the
similarity SimQAA(q, a) for each answer a ∈ A′ with the original query q. The
similarity value can be used to rank answers obtained in one AI step in the tree.
Then irrelevant answers can be filtered based on a threshold. Simp(i, q, a) is the
similarity of the parameter at position i in the query and the answer formula. A
description of each of the Boolean functions in Equation 2 is provided in Table 1.

Table 1. Boolean Functions used in Equation 2.

Function Return Value

V (arg) True if arg is a variable, False otherwise.
A(arg) True if arg is anti-instantiated, False otherwise.
PN(arg) True if arg is a proper noun, False otherwise.
C(arg) True if arg is a constant other than a proper noun, False otherwise.

Simh
wn(i, q, a) is the similarity of the symbol at an answer position that

is not a proper noun having the same variable in the corresponding positions
of the query. The similarity between two concepts is measured according to
WordNet (as discussed earlier). Simh

wn(i, q, a) works by iterating through all
the positions in the answer and calculating the similarities (using WordNet)
at the appropriate positions. We refer to this similarity as horizontal similar-
ity, because the AI operation breaks bonds inside the query. For example, af-



ter AI, ill(X, asthma)∧ allergic(X, inhaler) may become ill(X, asthma)∧
allergic(Y, inhaler); hence the bond created by common variable X is broken
and the similarity needs to be checked after the answer is obtained. Similarly,
Simh

pn(i, q, a) is the similarity of the answer positions that are proper nouns
having the same variable in the corresponding positions of the query. We assign
a moderate similarity of 0.5 in the case of proper nouns, because we neither want
to completely suppress the significance of proper nouns nor to completely ignore
the notion of generalization. Simc(r, s) is either the semantic similarity between
the constants or becomes undefined. A query-answer pair is rejected or pruned
out if the constants’ similarity value is below a certain threshold Tc (0.5 in our
case). This way we avoid having a huge cross product of two queries (leading to
combinatory explosion) hence reducing and restricting the query space.

Simc(r, s) =

{
Simwn(r, s), if Simwn(r, s) >= Tc

⊥, otherwise.

(3) Sim
h
wn(i, q, a) =

m∑
j=1, i 6=j

pj(q)=pi(q)

Simwn(pi(a), pj(a))

O
(
pi(q)

)
− 1

(4)

Simh
pn(i, q, a) =

m∑
j=1, i 6=j

pj(q)=pi(q)

Simpn(pi(a), pj(a))

O
(
pi(q)

)
− 1

(5)

Simpn(r, s) =

{
1, if r = s,

0.5, if r 6= s,

(6)

where r and s are two proper nouns.
For further optimization, we may get user feedback to decide if some variable

is important and need not be anti-instantiated. This would reduce the query
space by limiting the size of the cross product of two sub-queries.

Example 1 shows how the described functions can be used to measure simi-
larity and how answers irrelevant to the original query can be filtered.

Example 1. (AI)+.
Failing Query: q = ill(X, asthma) ∧ ill(X, fever) ∧ allergic(X, inhaler)
Now, we analyze some answers obtained using SOLAR [10], in response to a few
generalized queries.
Generalized Query: q′ = ill(X, asthma)∧ill(X, fever)∧allergic(V’, inhaler)
Generalized Answer:

a′ = ill(lisa︸ ︷︷ ︸
1

, asthma︸ ︷︷ ︸
1

)∧ill(lisa︸ ︷︷ ︸
1

, fever︸ ︷︷ ︸
1

)∧allergic( john︸ ︷︷ ︸
0.5+0.5

2

, inhaler︸ ︷︷ ︸
1

)[SimQAA = .9]

Explanation: The query is relaxed by replacing the third occurrence of X with
a new variable V ′ as shown above. Breaking the horizontal bond results in a con-
stant john and the similarity for this position is computed using Simh

pn(i, q, a).
Since the overall similarity is still quite high, the answer may be related to user
needs.



Generalized Query: q′′ = ill(X, asthma)∧ill(X, fever)∧allergic(V ′,V”)
Generalized Answer:

a′′ = ill(lisa︸ ︷︷ ︸
1

, asthma︸ ︷︷ ︸
1

)∧ill(lisa︸ ︷︷ ︸
1

, fever︸ ︷︷ ︸
1

)∧allergic(tonny︸ ︷︷ ︸
0.5+0.5

2

, fruit︸ ︷︷ ︸
0.5

)[SimQAA = 0.83]

Explanation: The relaxed query above is generated by replacing the constant
inhaler with a new variable V ′′. This newly generated query results in a new
constant fruit in the answer a′′. The similarity between the concepts inhaler
and fruit is calculated using the similarity algorithm [9] based on WordNet
(the similarity is 0.5.)
Generalized Query: q′′′′ = ill(X, asthma) ∧ ill(V””, V”’) ∧ allergic(V ′, V ′′)
Generalized Answer:

a′′′′ = ill(lisa︸ ︷︷ ︸
1

, asthma︸ ︷︷ ︸
1

)∧ill(peter︸ ︷︷ ︸
0.5+0.5

2

, bipolar disorder︸ ︷︷ ︸
0.3

)∧allergic( tonny︸︷︷︸
0.5+0.5

2

, sunlight︸ ︷︷ ︸
0.26

)

[SimQAA = 0.59]

Explanation: The similarity based on WordNet is calculated for positions 4
and 6 as described in case a′′. We reject this answer based on Equation 3, as
sunlight is not related to asthma, which also makes the answer quite unrelated
to the query. This query space reduction can be implemented beforehand during
the generalization phase by only substituting constants that are related. Simi-
larly, the value is calculated for position 3 as described previously in a′.

3.2 Zero or More AI Iterations after Iterative Dropping Conditions
(DC)+(AI)∗

This branch can be further divided into the following sub-branches:

(DC)+ (Dropping conditions iteratively) : Dropping a condition does not
introduce any new variable or conjunct while generalizing a query. Therefore, no
new constants/answers will be introduced. Only informative answers related to
some cropped part of the original query are returned. However, the information
lost with each generalization step depends on the constants and variables being
dropped with the dropped literal. A function returning the similarity depending
on each generalization step is given in Equation 7.

SimQAD(q, a) =
m′

m
(7)

where q is the original user query, a is one of the answers produced against some
generalized query, m is the sum of arities of the predicates in the query, and
m′ is the sum of arities of the predicates in the answer (or in the generalized
query). Example 2 shows how similarity is calculated when literals are dropped
in generalization steps. We also suggest to take optional feedback from the user
if one predicate is more important than the others. Then we can decide which
literal to drop first. This optimization will help drop literals efficiently.



Example 2. (DC)+.
Failing Query: q = patient(X, tokyo, Y )∧ill(X, asthma)∧allergic(X, inhaler)
The generalized queries, their respective answers (obtained using SOLAR [10]), and
the similarity values are:
Generalized Query: q′1 = ill(X, asthma) ∧ allergic(X, inhaler)
Generalized Answer: a′

1 = ill(peter, asthma) ∧ allergic(peter, inhaler)
[ 4
7

= 0.57]
Explanation: Three positions dropped; hence, more information loss

We can see from the similarity values as well as the answers obtained that
the similarity decreases with each step of generalization. We also notice that
the similarity can be calculated before the actual answer is extracted in case
of (DC)+ because in this case, the similarity is not obtained on the basis of
semantics but only considering the syntax of the query. This enables supervised
and controlled answer generation. Supervised and controlled query generalization
improves the efficiency of the system by omitting some queries for which an
answer need not be calculated.

(DC)+(AI)+(Iterative dropping conditions followed by iterative AI) :
We already discussed that the DC operator alone does not introduce any new
variables. However, if AI is applied after DC, then we do expect new variables in
the generalized query. Therefore, we may obtain very dissimilar answers. DC will
always reduce the size of the query, therefore reducing the answer size. In this
case, one-to-one matching with the original query is not possible. Additionally,
iterations over DC operator followed by AI increases the possibility of having
queries with more dissimilar answers.

We propose a mechanism to first determine the amount of information re-
tained after iteration over DC operations and then find out how similar the
anti-instantiated part is when some information has already been cropped out
during the DC iterations.

A function returns the similarity between query and the answer is shown in
Equation 8.

SimQADA(q, a) = SimQAA(qDC+

, aDC+AI+

)× m

m′
, (8)

where SimQAA is passed the query which is the result of the DC operator,
along with the final answer obtained. The cropped query after DC is treated as
the original query so that one-to-one matching is possible. We multiply this factor
with the information retained after applying the DC operator. m is total number
of positions in the original query, and m′ is the number of positions remaining
after DC operations have been carried out. This function first determines the
information retained in the query after applying iterations of the DC operator
and then finds how similar the retained information is to the query. Example 3
uses this function to find the similarity between the query and the answer with
a single AI operation applied after multiple DC operations.



Example 3. Multiple DC followed by AI.
Failing Query: q = patient(X, tokyo, Y ) ∧ ill(X, fever) ∧ allergic(X, inhaler)
Explanation: qDC.DC.AI = allergic(X,Y ) is the relaxed query produced after
applying DC twice followed by single AI operation. Here, m

m′ = 0.28 (Information
Retained) and aDC.DC.AI = allergic(peter, bronchodilator) is the general-
ized answer.
Similarity: SimQADA(q, a) = SimQAA(qDC.DC , aDC.DC.AI) of 0.28 = (1 +
0.3)/2 of 0.28 = 0.18

3.3 DC followed by AI after Iterative Goal Replacement
(GR)+(DC)∗(AI)∗

This branch can be further divided into sub-branches but we only focus on one
of the branches to start with.
(GR)+ (Iterative goal replacement): Execution of the GR operator poten-
tially adds new conjuncts, new variables, and new constants to create generalized
queries. It replaces a sub-part of the failing query with the head of a matching
single-headed range-restricted (SHRR) rule in the knowledge base (Σ). The an-
swers returned against these queries might be extremely dissimilar.

Generalized queries in this case consist of two parts, a replaced part (we
call it the body of the rule B) and an actual existing/preserved part E, which
is not replaced. Logically speaking, the replaced part of the query should not
semantically affect similarity directly because it is database dependent, reflecting
how the knowledge base is defined. On the other hand, we also notice that some
variables or constants may be dropped or new ones may be introduced; therefore,
we have to analyze accordingly.

We realize that the newly introduced constants, variables, and conjuncts are
database-dependent and are placed as a rule in the knowledge base; therefore, we
do not consider them as irrelevant or dissimilar to the original query construct.
For the same reason, we do not compare the body with the head of the rule so
that the sense of generalization is retained. However, we do consider the constants
and variables missing in the generalized queries because that is the information
lost during generalization steps. We consider the inter-relationship RBE between
the body B and existing part E and then relate it with the inter-relationship
RHE between the head of rule H and the existing part E. Finding and analyzing
the relevance RBE and RHE shows how much information has been lost during
the relaxation process, and we also see how the bond between the body replaced
and the existing part in the query is broken when the repeating variables or
repeating constants are removed from the query.

We present a supervised and controlled answer generation mechanism for
GR. We first assign a weight to each repeating variable and constant in E and
B. By repeating variable (or constant), we mean a variable (or constant) that is
present in both E and B. These variables and constants represent the bond or
link between the body and the existing part, and we need to analyze the effects
of breaking these links on query answer similarity. The weight for each repeating
variable/constant is calculated using Equation 9.



we =
O(e)

m
, (9) wt =

∑
(O(et)× we), (10) SimQAG(q, a) =

wq ′

wq
(11)

where we is the weight for variable (or constant) e in E and B. O(e) is the
total number of occurrences of e, and m is the total number of positions in
the original query. Once the weight for each repeating variable (or constant) is
calculated, we find the total weight of the orignal query as well as that of the
generalized query by Equation 10, where t ∈ {q, q′} indexes the weight based on
the number of repeating variables or constants in the original or relaxed query.
The total similarity is calculated using Equation 11.

We know that wq and wq ′ are the total weights of the repeating arguments
in the original query and generalized query, respectively. wq is the actual weight
carried inside the query, whereas wq ′ is the weight retained after generalization.
Therefore, the retained weight is calculated in Equation 11.

Example 4. (GR)+.
Failing Query:

q =

B︷ ︸︸ ︷
ill(X, asthma) ∧ allergic(X, inhaler)∧

E︷ ︸︸ ︷
gender(X, male) ∧ history(X, asthma)

Weight of each Repeating Variable/Constt.: wX = 4
8

= .5, wasthma = 2
8

= .25

Generalized Query:

q′ = treat(X, injection)︸ ︷︷ ︸
H

∧ gender(X, male) ∧ history(X, asthma)︸ ︷︷ ︸
E

SHRR rule: ill(X,Y ) ∧ allergic(X,Z)→ treat(X, injection)
Substitution: θ = {asthma/Y, inhaler/Z,X/X}
Total Weight: wq = 4× 0.5 + 2× 0.25 = 2.5
wq ′ = 3× 0.5 + 1× 0.25 = 1.75
Total Similarity: SimQAG(q, a) = 1.75

2.5 = 0.7

We have discussed and proposed a similarity metric for the similarity between
a user query and generalized informative answers produced by a cooperative
query answering system SOLAR [10].

We explained our similarity metrics for all three operators executed itera-
tively (i.e., DC, AI and GR) and the execution of AI followed by DC. We do not
discuss the case of combination with GR yet in detail. We now briefly discuss
the remaining operator combinations with GR.

DC applied after GR will keep the same variables, conjuncts, and constants
as in the initial query, with new ones added by the GR operator. In iterative
GR followed by iterative AI, the AI operator adds more variables by replacing
constants and some variables. Therefore, similarity must be calculated for the
answers generated against this case.

We conclude that we need to check the similarity between the query and
the answer only in case of AI and GR operators. Whenever these operators are



applied in any iteration, they might introduce new variables or conjuncts and
may result in unrelated answers.

Once the similarity between the original query and the obtained answer is
calculated, we filter out the answers with low similarity. A trial-and-error ap-
proach is required to define a threshold for deciding whether the answer is deemed
related or not.

4 Conclusion, Limitation, and Future Work

We propose an approach to filter out unrelated answers in a cooperative query
answering system and to return relevant answers to the user. We provide a
similarity metric for all combinations of operators executed iteratively, except
the GR operator combined with DC and AI. In the future, we intend to extend
our approach and develop a similarity function for the remaining cases that are
not covered yet. We also plan to evaluate our complete approach on a benchmark
dataset.

References

1. Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: Cobase:
A scalable and extensible cooperative information system. Journal of Intelligent
Information Systems 6 (1996) 223–259 10.1007/BF00122129.

2. Halder, R., Cortesi, A.: Cooperative query answering by abstract interpretation.
In: Proceedings of the 37th international conference on Current trends in theory
and practice of computer science. SOFSEM’11, Berlin, Heidelberg, Springer-Verlag
(2011) 284–296

3. Shin, M.K., Huh, S.Y., Lee, W.: Providing ranked cooperative query answers using
the metricized knowledge abstraction hierarchy. Expert Systems with Applications
32(2) (2007) 469–484

4. Pivert, O., Jaudoin, H., Brando, C., HadjAli, A.: A method based on query caching
and predicate substitution for the treatment of failing database queries. In: IC-
CBR’10. LNCS, Springer (2010) 436–450

5. Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative
answering. Journal of Intelligent Information Systems 1(3) (December 1992) 293–
321

6. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers.
In: Proceedings of the 9th International Conference on Flexible Query Answering
Systems. Lecture Notes in Artificial Intelligence, Springer-Verlag (2011)

7. Miller, G.A.: Wordnet: A lexical database for english. Communications of the
ACM 38 (1995) 39–41

8. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press (1998)

9. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of
the 32nd annual meeting on Association for Computational Linguistics. ACL ’94,
Stroudsburg, PA, USA, Association for Computational Linguistics (1994) 133–138

10. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: Solar: An automated deduction
system for consequence finding. AI Commun. 23 (April 2010) 183–203


