
Secure Mediation with Mobile Code?

Joachim Biskup, Barbara Sprick, and Lena Wiese

Universität Dortmund, D-44221 Dortmund, Germany,
{biskup,sprick,wiese}@ls6.cs.uni-dortmund.de,

home page: http://ls6-www.cs.uni-dortmund.de/issi/

Abstract. A mediator helps a client of a distributed information sys-
tem to acquire data without contacting each datasource. We show how
mobile code can be used to ensure confidentiality of data in a secure
mediation system. We analyze what advantages mobile code has over
mobile data for secure mediation. We present a Java implementation of
a system that mediates SQL queries. Security risks for the client and
the mobile code are delineated; offending the integrity of its own data
is identified as a special type of attack of mobile code in a mediation
system. We name appropriate countermeasures and describe the amount
of trust needed in our system. As an extension, we consider security in
a hierarchy of mediators. Finally, we combine mobile code with mobile
agent technology.

1 Introduction

In a world with a growing amount of digitalized information, finding relevant
data is a tedious task – and it gets even more difficult if the information is
distributed on several different host systems (the “datasources”). Wiederhold
and Genesereth (cf. [13, 14]) introduced the concept of mediation to support the
client of a distributed information system: The client directs a query to a so-
called mediator; the mediator tries to gather the data best fitting the client’s
interests by sending partial queries to datasources; finally, the mediator con-
structs a global result out of the partial results and sends it back to the client.
See Figure 1 for a basic mediated system.
This basic system does not consider security aspects. However, participants may
require some security demands to be fulfilled:

1. Anonymity of participants: Clients may wish to stay anonymous to the data-
sources.

2. Confidentiality of data: Datasources may wish to be sure that the requesting
client is eligible to access the requested data; i.e., datasources have to perform
some kind of access control.

? This work was funded by the German Research Council (DFG) under grant number
BI 311/11-1.

2

.

.

.
query
global

global
result

partial query 1

partial result 1

partial query n

partial result n

Source 1

Source n

MediatorClient

Fig. 1. A basic mediated information system

Altenschmidt et al. (cf. [2]) designed a system for secure mediation. Its general
design is shown in Figure 2 and outlined in the following. Given that not re-
vealing a client’s identity is one precondition to ensure anonymity for the client
(Point 1), in the secure mediated system a client attaches a credential to her
global query; the mediator forwards the credential with the partial queries to
the datasources. This credential is issued by a trusted certification authority (see
Section 5 for a description of our trust model); it links properties of the client to
her public encryption key but does not contain details of her identity. The client
keeps another certificate linking her identity to her public key in a safe place.
Instead of specifying just one key, the client can also attach a set of credentials
(containing different properties linked with possibly different public keys of hers)
and therefore combine multiple properties.

.

id: client’s identity

Authority
Certification

p: properties

query

global
result

global

partial query n

partial result 1

partial result n

partial query 1

k pub p
id

pub

p
k

k

p
k pub

pub

k

Source 1

Source n

k
p
k

pub

pub

MediatorClient

pub

pub

.

.

.

k : client’s public key

Fig. 2. A credential-based secure mediated information system

Datasources base their access control decisions only on the properties presented
in the credentials. To keep the data confidential each datasource applies a hybrid
encryption scheme to its partial result: A session key used to encrypt the partial
result is itself encrypted with the client’s public keys in the credentials. Assum-

3

ing a reliable public key infrastructure and adequate encryption techniques, only
the person who possesses the private decryption keys should be able to decrypt
the session key and therefore the partial results and to access the returned data
(i.e., Point 2 is fulfilled).

By encrypting the partial results we face the following problem that will be
treated in this paper:

Given encrypted partial results, the mediator has to supply the client with a

global result to her global query. However, the mediator may not be eligible to

access the datasources’ unencrypted data.

Unfortunately, there does not exist a general “privacy homomorphism” (as intro-
duced in [11]) to solve the problem of “computing with encrypted data” (cf. [12])
where all data are encrypted with the same key. Furthermore, there are no ap-
proaches known to us that cover the problem of computing with data encrypted
with different session keys; this is the case if the datasources apply a hybrid en-
cryption scheme. So, up to now the mediator is not able to compute an encrypted
global result from encrypted partial results. Moreover, the client should better
not give away her private decryption keys as she cannot control what other par-
ties use them for. Thus we have to impose the additional work of computing the
global result on the client.

Section 2 introduces mobile data and mobile code as possible solutions to our
problem and lists advantages of mobile code. Section 3 presents our Java imple-
mentation of the secure mediated system with mobile code. In Section 4 possible
attacks by mobile code are depicted and a number of protection mechanisms
are explained; attacks on the code are considered as well. Section 5 describes
the model of trust we assume in our system. Section 6 covers additional security
aspects in a hierarchy of mediators. We conclude the paper with an outline of
another application area for a secure mediated system with mobile code. More
details on our mediation system can be found in [16]; our Java implementation
can be downloaded from [15].

2 Communication between Mediator and Client

The basic idea to solve our problem is that the client gets the encrypted partial
results from the mediator and additionally an instruction how to combine the
partial results. We call the set of unencrypted partial results R, the set of en-
crypted partial results Renc, and the combination instruction i. The client first
decrypts the partial results and then computes the global result according to i;
she uses a program for this computation. We distinguish two possible origins of
this program:

1. A general program p was on the client’s computer beforehand. The mediator
specifies a format for i and Renc and sends d = (i,Renc). On client side Renc

is decrypted to R; then, i and R are used as inputs to compute the global
result p(i,R).

4

2. The mediator constructs a specialized program p(i) based on i containing
libraries that are necessary to compute the global result. The mediator then
sends c = (p(i),Renc). On client side Renc is decrypted; the execution of
p(i)(R) yields the global result.

In general, the first approach corresponds to the concept of “mobile data”, the
second one to the concept of “mobile code”1. Similar to [1] and [10] we use the
following definitions in this paper:

Definition 1. Mobile data, data processor:

A mobile data system comprises a client requesting information and a server

supplying this information. Communication between client and server is merely

an exchange of data without program code. Processing the data on client side is

solely done by a program already residing on the client’s computer; this program

is called a data processor. The server has to transmit the data in a predefined

format.

Definition 2. Mobile code, execution environment:

Mobile code consists of an executable program; there may also be a set of data

included that the program operates on. An installation of the program is not

needed; i.e., it can be executed immediately. A mobile code instance is sent to

one single recipient only. To control mobile code, it should be run in an execution

environment that shields the operating system from the mobile code. There is no

need for a common data format. However, the mobile code has to provide a public

execution interface to the recipient.

A pre-installed data processor on the client’s computer is indispensable in the
concept of mobile data. But also if we want to impose security settings on mobile

code, a pre-installed execution environment is necessary. We opted for the mobile
code approach as it offers some advantages that are described in the following.

In general, Fong [5] and Peine [10] consider mobile code advantageous over
mobile data. Yet, their conclusions do not entirely apply to secure mediation.
We now give just a short overview of our reasoning; see Table 1 for a summary
and [16] for a detailed analysis.

In secure mediation, there is no difference between mobile code and mobile
data considering Distribution of state and Reliability of network: Only one
transmission from mediator to client is necessary, because the mediator collects
all partial results; that is why inconsistencies in the distributed computation
state or communication problems due to an unstable communication link hardly
occur – be it with mobile data or mobile code. As for Network traffic, mobile
code even increases the amount of transmitted data due to its additional libraries.
However, mobile code offers the following advantages for secure mediation:

1 We also use the term “mobile code” in contrast to “mobile agents”. The most dis-
tinctive feature of mobile agents is their ability to deliberately change their location
in a network of host computers.

5

Comparison gen. med. Reason

Avoiding distribution of state + 0 No inconsistency: Serial computation
between mediator and client

Decoupling from network + 0 Only one transmission: Mediator collects all
partial results

Reduction of network traffic + – Additional program binaries (e.g. class
files)

Local interaction with
resources

+ + Computation at client without further
installation

Footprint size + + Small execution environment

Extensibility + + Libraries are included in mobile code
Table 1. Mobile code versus mobile data; gen. = general, med. = mediated, + =
mobile code better than mobile data, 0 = equal, – = mobile code worse

– Locality: Local interaction with resources (like the decryption keys for par-
tial results) without further installation of libraries can only be guaranteed
with mobile code.

– Size: The execution environment of mobile code may be considerably smaller
than a data processor of mobile data as all necessary libraries are sent along
with the code; those libraries occupy space on the client computer only while
being used.

– Extensibility: The mobile code can use its up-to-date libraries without
further need for action of the client.

3 Our Solution: Mobile Java Code

The Java implementation of our secure mediation system processes queries in the
Structured Query Language (SQL). It comprises a client module (the execution
environment for mobile code), a mediator module and a datasource module. The
modules communicate via RMI calls. We describe each module in detail in the
following subsections.

3.1 Datasource Module

The datasource module needs access to an appropriate Java database driver.
When the datasource module receives a partial query, it opens a SQL connec-
tion to a database with the database driver to get the partial results. The data-
source module encrypts a partial result with hybrid encryption. This has two
advantages:

– Each partial result is encrypted with a newly generated symmetrical session
key; this makes cyphertext-attacks aimed at recovering the client’s private
decryption keys more difficult.

6

– The possibly large set of data in the partial result is encrypted with the faster
symmetrical encryption and only the small-sized session key is encrypted
asymmetrically.

The default Java packages do not support asymmetrical encryption. However, it
is possible to integrate so-called “cryptography providers”. We used the “Bouncy
Castle Provider” (BCP; see [4]). The session key is encrypted with the Bouncy
Castle RSA algorithm (in Electronic Code Book mode and with Optimal Asym-
metric Encryption Padding). Both asymmetrical encryption of the session key
(with possibly a set of different public keys extracted from the client’s creden-
tials) and symmetrical encryption of the partial result are both carried out by
the class javax.crypto.Cipher. The parameters for symmetrical encryption
(algorithm and keylength) can be set in the GUI by a datasource administrator.

On client side, Java class definitions can be integrated at runtime. That is
why datasources are not restricted in what data formats they use to represent
their partial results. Their formats just have to implement the interface Result

that is known to the client module; any format implementing Result can be
processed on client side if the class definitions are sent within the mobile code.

3.2 Mediator Module

The mediator module uses the “SQL2Algebra” library developed at our depart-
ment to process a client’s SQL query. The library takes the query as input and
outputs a so-called algebra tree. The leaves of this algebra tree contain the partial
SQL queries that are forwarded to the datasources. Each inner node represents
one of the algebraic operators selection, projection, union, join and complement ;
only queries representable with these operators can be processed by the library.
This is an examplary SQL2Algebra transformation:

SQL query Algebra tree
Select distinct tv1.A UNION

from TABLE1 tv1 | PROJECT{A}
union (select | | "Select * from TABLE1;"

distinct tv2.A | PROJECT{A}
from TABLE2 tv2); | "Select * from TABLE2;"

Based on the algebra tree, the mediator module constructs the so-called “an-
swer tree” – the executable that is returned to the client. Each inner node of the
answer tree is an operator object; it provides a method that executes the respec-
tive operation on its child nodes. Similar to the data format of the datasources,
the mediator can use operator classes unknown to the client as long as they im-
plement the interface ResultOperator and their class definitions are included
in the mobile code. A leaf of the answer tree is an object of type ResultProxy;
it has a reference to a java.util.Hashtable that stores all encrypted partial
results returned by the datasources. Then the mediator module constructs the
mobile code by joining the answer tree and the necessary class definitions (as
one or more Java Archives (JARs)) in an object of type ResultExtractor.

7

The mediator module encrypts the mobile code hybridly using the public keys
contained in the client’s credentials. Finally the mediator module signs the mo-
bile code using java.security.Signature. Encrypting and signing is done to
secure the mobile code during transmission between mediator and client.

3.3 Client Module

A client enters a SQL query and the mediator name (or its IP address) in the
client module. She loads her credentials from a Java KeyStore (JKS); at the same
time, the client module verifies whether she knows the password that secures
the corresponding private decryption keys. The client module sends the query
together with the credentials to the indicated mediator module.

After receiving the mediator’s answer, the client module checks the signature
of the mobile code with the verification key of the mediator that the client loaded
from a JKS. If the signature is correct, the client module decrypts the mobile
code with the private keys specified when loading the credentials. Decryption
leaves the answer tree and the JARs. For each mobile code the client module
creates a uniquely named working directory, where it temporarily stores the
JARs. Then the client module accesses the Hashtable of the mobile code that
contains the encrypted partial results, decrypts each partial result and writes
the decrypted partial result back to the Hashtable.

Before execution is started, the JARs have to be made available to the
Java classloading mechanism. We replaced the default system classloader with
a new classloader that allows to add filenames to its search path and remove
them again. As our classloader replaces the system classloader, simply the new-
operator can be used in the mobile code to instantiate an object. So, the client
module adds the JARs to the classloader’s search path and calls the calculation
method of the root operator of the answer tree. Each operator recursively calls
the calculation methods of its children and then processes their return values.
If a child is a leaf (i.e., a ResultProxy-object), the calculation method accesses
the Hashtable containing the decrypted partial results and returns the appro-
priate one. The client module presents the global result to the client. After this,
it resets the classloader’s search path and deletes the working directory.

4 Security Issues

In general, in a dynamic mediated system with constantly changing, unidentified
participants there is no basis for mutual trust between the participants. The
client can protect her computer against outside attacks from other participants
by adequate means (e.g., firewalls or authentication mechanisms). The crucial
point is that the client has to let code enter her computer to benefit from the
code mobility.
In our system, we still rely on certain trust relations (see Section 5); however,
our design goal was to minimize the amount of trust the client has to put in
the mobile code (specifically the program p(i)) she receives. To achieve this, we

8

use an execution environment that takes care of a secure execution of the code.
This implies that the client has to check the small execution environment for
correctness once before using it (or the client trusts the execution environment
instead).
A feature that distinguishes a mediated system from other mobile code systems
is that a mobile code instance does not have one unique producer. Instead, the
program part of the mobile code is constructed by the mediator while data
parts are supplied by different datasources. That leads to a consideration of the
following principals:

– the mediator (as producer of program p(i) and sender)
– the datasources (as suppliers of data Renc)
– the mobile code c

– the program p(i) inside the mobile code
– the data Renc inside the mobile code (or R after decryption)
– the client (and her computer)

In the following two subsections we explore in what ways mobile code and the
mediator could attack the client and what the execution environment can do
to protect the client. In the third subsection, mobile code is considered as the
victim of attacks of the client.

4.1 Mobile Code Attacks the Client

The client wants security criteria for her computer to be met. The basic require-
ments are confidentiality (of the data and programs on the computer), integrity

(of these data and programs) and availability (of hard- and software on the com-
puter). That means mobile code should not be able to spy out or corrupt data
and programs or monopolize resources on the client computer.
In addition to plain espionage, corruption or monopolization there are three spe-
cial types of behaviour of mobile code that could potentially lead to one or more
of these attacks. Mobile code could

– conspire with other mobile codes on the client computer: Single
mobile codes may seem harmless; but if several different codes are allowed
to communicate on the client computer, they could carry out an attack in
combination. As an example, let c1 be a mobile code that is allowed to read
a decryption key (e.g. one to decrypt partial results) but may not use a
network connection, and let c2 be a mobile code that can open a network
connection but cannot read any data. It is a case of espionage if now c1

communicates the decryption key to c2 and c2 sends the key via the network
connection to another computer.
As a second example, consider two mobile codes that monopolize the pro-
cessing unit by permanently alternating calling procedures of one another.
This would be a denial of service attack on the availability of the client
computer.

9

– masquerade as another identity: If a mobile code succeeds in convincing
the client that it represents a trusted identity, it could misuse this trust
for starting attacks. A mobile code could pretend to be sent by a trusted
mediator although its real sender is an attacker unknown to the client. The
client possibly would run such code with less restrictions.
Mobile code could also masquerade as a part of another program. It could
for example simulate belonging to the execution environment by opening a
similar looking input dialog; in this dialog the mobile code could for instance
ask the user to enter the password that secures a decryption key.

– download other programs or program parts: If a mobile code is allowed
to receive data via a network connection, it could download additional pro-
grams or program parts that eventually attack the client. Young and Yung
(cf. [18]) call this a “malware loader”.

Literature on mobile code considers the following techniques to protect a
client from those attacks (see e.g. [5, 8]):

1. Dynamic Access Control

2. Signed or Certified Programs in combination with contracts
3. Program Checking; e.g. Proof-Carrying Code (see [9])
4. Sandbox

Which (or which combination) of these techniques is appropriate for a secure
mediated system?

For the client, proof-carrying code would possibly be a good solution: She
would have to check the proof for correctness before starting the code but would
not have any performance loss due to dynamic checks. However, there is the
difficulty that the mediator generates the code (e.g. the SQL algebra tree) at
runtime and therefore also has to generate the proof at runtime. Since proof
generation generally is more complex than proof validation, the client would
have to wait quite a long time for the mediator’s result.
Nevertheless there would be the following remedy if the code is constructed from
modular building blocks – as for example the SQL algebra tree is constructed
from only a small number of basic algebraic operators: The mediator could have
the proofs for the building blocks ready and just prove that they are combined
correctly for the particular query. Unfortunately, automated proof generation is
still a field of intensive research; it is so far impossible to generate a proof for
an arbitrary program. That is why we have chosen another strategy explained
in the following.

As for the mobile Java code, some security-relevant operations have to be
performed on client side:

– the secret decryption keys have to be accessed to decrypt the mobile code
and the partial results

– a working directory for the mobile code has to be created and the JARs have
to be saved there

– the filenames of the JARs have to be added to the system classloader’s search
path and removed again after execution

10

– the mobile code has to be started (i.e., system resources like the processing
unit or memory have to be assigned to the code)

– the working directory has to be deleted after execution.

If the mobile code carried out all this operations, it probably would need a lot of
changing permissions; i.e., dynamic access control had to be performed on client
side. In our design however, we let the client module do all security-relevant
operations and let the mobile code run in a sandbox. More precisely the mobile
Java code does not need any Java permissions on the client computer; just the
client module (as the execution environment) gets a minimal set of permissions
to access the decryption keys, save the JARs etc.
The sandbox is a sufficient basis for execution of mobile code in our secure me-
diated system. However, a more advanced implementation could exploit advan-
tages of dynamically associating different mobile codes to different Java protec-
tion domains (and by that assigning code different Java permissions). This would
enable the client to give some codes a higher priority or let some codes commu-
nicate while others are not allowed to do this. Possibly execution of mobile code
could also be based on time-dependent conditions. If the client performs some
computations regularly, mobile code could be denied execution at that time to
avoid denial of service attacks. Similarly, a context-based condition could take
other running mobile codes into consideration and could prevent a conspiracy.

In the sandbox, code is not executed on contract basis, but rather technical
protection mechanisms are employed. However, signing the mobile code by the
mediator (i.e., the code producer) is additionally used to check integrity of the
code after transmission to the client.

4.2 Mediator Attacks Client

The mediator takes a central position in a mediation system. It has access to the
global query and all credentials in it and constructs the mobile code. It can abuse
this positions to attack the semantic correctness of the result; i.e., it constructs
a program p(i) that computes a wrong global result.
We did not include a countermeasure for this attack in the implementation but
we suggest the following adoption of the proof-carrying code technique to
detect such an attack. While in the original application area (see [9]) the proof
states that the code does not harm the client, now the proof attests that the
mobile code contains a correct result to the client’s query.
Take the SQL algebra tree as an example: The mediator could construct a forged
algebra tree by exchanging algebraic operators (e.g. a join instead of a union).
With code carrying a proof of correctness, the mediator has to prove that the
algebra tree has been correctly derived from the query. This could be done by a
proof that restores the query from the algebra tree.

Apart from that, a more subtle attack is possible: As mentioned before, in a
secure mediation system the program p(i) is produced by the mediator and the
data Renc are supplied by several datasources. On client side, p(i) operates on the
decrypted data R. The program p(i) could again attack the semantic correctness

11

of the global result and also the integrity of R while being executed on the client
computer. In the Java implementation e.g., the operator classes inside the mobile
code are unknown to the client. They process decrypted partial results r ∈ R.
The mediator could construct operators that compute an incorrect global result
by changing values in every r.
The mediator could use traditional proof-carrying code or a certified program
to assure the client of the correct execution of p(i).

4.3 Client Attacks Mobile Code

The mobile code producer makes program p(i) available to the client so that she
can receive the global result; yet, the code producer may want p(i) to be secured
from infringement of copyright.
Several approaches have been made to address this problem. Software mech-
anisms are obfuscating (treated theoretically in [3]) and computing with

encrypted functions (cf. [12]). Copyright protection in these forms is contra-
dictory to program checking approaches used to protect the client from attacks
of the mobile code (see Section 4.1); even proof-carrying code has to be pro-
cessed by the client in clear to deduce a safety predicate. Especially Java byte
code is difficult to protect due to the existence of decompilers and code purifiers.
To overcome this problem, hardware components could be used in combination
with certified programs (or certified proofs) to build a trusted computing

platform (cf. [17]) but we have not considered this in our implementation.

5 The Trust Model

Our aim was to reduce the necessity for trust to a minimum. Yet, some trust
requirements remain. The certification authority (CA) has to be trusted by all
other participants (clients, mediators, and datasources) because all of them de-
pend on its impeccable behaviour:

– A datasource has to trust that the CA issues correct and valid credentials
such that only eligible clients are able to decrypt its data.

– Similar to the datasources, a mediator has to trust that the CA issues correct
and valid credentials such that its mobile code is protected from access by
clients other than the eligible one (or from access by the CA itself).

– A client has to trust the CA that it keeps her identity a secret.

Additionally, as long as copyright protection (as described in Section 4.3) is not
put into practice, the mediator has to trust the client, that she does not use the
mobile code in other ways than the mediator intended her to do (e.g., that the
client follows a licence that accompanies the mobile code).
Equivalently, a datasource has to trust the client that she does not pass data on
to other, non-eligible participants. However, a datasource does not need to trust
a mediator; a mediator cannot attack the confidentiality of partial results if an
appropriate encryption is used.

12

The main point is that the client has to trust the datasources (as suppliers
of data) and the mediator (as producer of program code) just as far as semantic

correctness of the global result is concerned because the execution environment
protects her computer from other attacks (see Section 4.1). So, there remain
two possibilities of attacks on the correctness of the global result: The data
inside the mobile code might be semantically wrong (i.e., the client has to trust
that the datasources supplied correct information; however, this is the same
with any traditional database query), or the mediator might construct a mobile
code that computes an incorrect global result (see Section 4.2; however, in basic
(“unsecure”) mediation the mediator could also corrupt the data supplied by
the datasources).

6 Hierarchy of Mediators

As an extension to our system, we considered a hierarchy of mediators. The client
still sends her query to one mediator, but mediators are able to forward partial
queries to other mediators. This technique offers increased flexibility and scal-
ability: Specialization of mediators to certain topics is possible; a mediator can
also decide whether it forwards partial queries to more specialized mediators or
just gathers partial results from its own datasources. In a hierarchy of mediators
the mobile code is built by different code producers: Each mediator constructs
a partial code containing its own program part, encrypted partial results and
possibly other partial codes.

Since the execution environment protects the client from attacks (except the
semantic ones) by mobile code of a single mediator, mobile code of a hierarchy
of mediators does not mean an increased risk to the client. However, signature
checking becomes complex when each partial code has been signed by a different
producer; likewise a safety proof for proof-carrying code has to be combined from
several partial proofs.

With a mobile code composed of different partial codes, not only attacks on
the integrity of the data R are possible (see Section 4.2), similarly the integrity

of execution of a partial code could be endangered by other partial codes. This
problem is e.g. inherent to the Java classloading mechanism: In the JARs brought
along with the mobile code, overwriting of class definitions can occur. A class
is loaded from the JAR that is searched first; if a second JAR contains a class
with the same class name, this second class definition is ignored. In our Java
implementation, JARs are scanned for duplicate class definitions.

7 Conclusion

With the adoption of mobile code for secure mediation we are able to transmit
data from datasources to a client in encrypted form; the mediator does not pro-
cess any clear-text data. That ensures confidentiality of the data and reduces the
necessity for trust in the mediator. Our mobile code system is easily extensible
and its execution environment is small.

13

Optimizing runtime performance was not in the main focus of this work. In
comparison to basic (“unsecure”) mediation, in our secure mediated system per-
formance penalties occur mainly due to encryption on datasource side, mobile
code generation (and again encryption) on mediator side and decryption and
mobile code execution on client side. Due to a lack of time, runtime performance
has not been investigated systematically. Nevertheless, test runs performed in
an acceptable amount of time. One possibility of reducing both encryption time
and execution time would be to improve the SQL2Algebra-library that generates
the algebra trees on mediator side; algorithms that minimize the size of partial
results and the depth of the tree could be included.

Our mediation system with mobile code could be combined with existing
mobile agent systems (see e.g. [10, 7]) to profit from both technologies: The
client directs her query to a mediator; the mediator constructs an agent to collect
the partial results from the datasources. This reduces communication overhead
between mediator and datasources. Wrapping functions could be carried out by
such an agent as well to convert partial results into a homogeneous format. The
client, however, is not charged with agent creation, agent management etc., since
the mediator takes care of all agent-related actions. Security considerations for
mobile agent systems have been investigated profoundly (see e.g. [1, 6]).

References

1. Joy Algesheimer, Christian Cachin, Jan Camenisch, and Günther Karjoth. Cryp-
tographic security for mobile code. In SP ’01: Proceedings of the IEEE Symposium
on Security and Privacy 2001, pages 2–11. IEEE Computer Society, 2001.

2. Christian Altenschmidt, Joachim Biskup, Ulrich Flegel, and Yücel Karabulut. Se-
cure mediation: Requirements, design and architecture. Journal of Computer Se-
curity, 11(3):365–398, June 2003.

3. Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs, volume
2139 of Lecture Notes in Computer Science, pages 1–19. Springer, Berlin, 2001.

4. The Legion of the Bouncy Castle. http://www.bouncycastle.org/.

5. Philip W.L. Fong. Proof Linking: A Modular Verification Architecture for Mobile
Code Systems. Phd thesis, Simon Fraser University, Burnaby, Canada, January
2004. See http://www.cs.sfu.ca/research/publications/theses/.

6. Günther Karjoth, Nadarajah Asokan, and Ceki Gülcü. Protecting the Computa-
tion Results of Free-Roaming Agents, volume 1477 of Lecture Notes in Computer
Science, pages 195–207. Springer, Berlin, 1998.

7. Günther Karjoth, Danny B. Lange, and Mitsuru Oshima. A Security Model
for Aglets, volume 1419 of Lecture Notes in Computer Science, pages 188–205.
Springer, Berlin, 1998.

8. Sergio Loureiro, Refik Molva, and Yves Roudier. Mobile code security. In Pro-
ceedings of ISYPAR’2000 (4ème Ecole d’Informatique des Systèmes Parallèles et
Répartis), pages 95–103, Toulouse, France, 2000.

9. George C. Necula and Peter Lee. Safe, Untrusted Agents Using Proof-Carrying
Code, volume 1419 of Lecture Notes in Computer Science, pages 61–91. Springer,
Berlin, 1998.

14

10. Holger Peine. Run-Time Support for Mobile Code. Dissertation, Universität Kaiser-
slautern, Fachbereich Informatik, October 2002.

11. Ron L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation, pages 169–179,
1978.

12. Tomas Sander and Christian F. Tschudin. Protecting Mobile Agents Against Ma-
licious Hosts, volume 1419 of Lecture Notes in Computer Science, pages 44–60.
Springer, Berlin, 1998.

13. Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992.

14. Gio Wiederhold and Michael Genesereth. The conceptual basis for mediation
services. IEEE Expert Intelligent Systems and their Applications, 12(5):38–47,
September/October 1997.

15. Lena Wiese. Mediator with mobile code support. http://ls6-www.cs.uni-

dortmund.de/issi/projects/DFG Kompositionalitaet/mobilecode.html.en.
16. Lena Wiese. Sichere Mediation mit mobilem Code – Implementierung und

Sicherheitsanalyse. Diploma thesis (in German), Universität Dortmund, Dort-
mund, Germany, October 2004. See http://ls6-www.cs.uni-dortmund.de

/issi/archive/literature/2004/Wiese 2004.pdf.
17. Bennet Yee and J. D. Tygar. Secure coprocessors in electronic commerce appli-

cations. In Proceedings of the First USENIX Workshop of Electronic Commerce,
pages 155–170, Berkeley, CA, USA, 1995. USENIX Assoc.

18. Adam Young and Moti Yung. Malicious Cryptography – Exposing Cryptovirology.
Wiley, Indianapolis, Ind., 2004.

