
Separation of Duties for Multiple Relations in Cloud Databases
as an Optimization Problem

Ferdinand Bollwein

Clausthal University of Technology

Institute of Applied Stochastics and Operations Research

Clausthal-Zellerfeld, Germany

ferdinand.bollwein@tu-clausthal.de

Lena Wiese

University of Goettingen

Institute of Computer Science

Goettingen, Germany

wiese@cs.uni-goettingen.de

ABSTRACT
Confidentiality concerns are important in the context of cloud

databases. In this paper, the technique of vertical fragmentation is

explored to break sensitive associations between columns of several

database tables according to confidentiality constraints. By storing

insensitive portions of the database at different non-communicating

servers it is possible to overcome confidentiality concerns. In ad-

dition, visibility constraints and data dependencies are supported.

Moreover, to provide some control over the distribution of columns

among different servers, novel closeness constraints are introduced.

Finding confidentiality-preserving fragmentations is studied in the

context of mathematical optimization and a corresponding inte-

ger linear program formulation is presented. Benchmarks were

performed to evaluate the suitability of our approach.

CCS CONCEPTS
• Security and privacy→ Database and storage security;

KEYWORDS
Separation of Duties, Vertical Fragmentation, Integer Linear Pro-

gram

ACM Reference format:
Ferdinand Bollwein and Lena Wiese. 2017. Separation of Duties for Multiple

Relations in Cloud Databases as an Optimization Problem. In Proceedings of
IDEAS ’17, Bristol, United Kingdom, July 12-14, 2017, 10 pages.
https://doi.org/10.1145/3105831.3105873

1 INTRODUCTION
Many cloud database providers not only offer flexible and scalable

services, but also a wide range of possibilities to process the stored

data. This spares the cost of maintaining an own computing center.

However, outsourcing data also means that the user loses control

over the data and the service providers have to be trusted in order

to ensure confidentiality. Hence, outsourcing sensitive or business-

critical data to a single untrusted cloud database provider is often

not an option. Obviously, one possibility to ensure confidentiality

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5220-8/17/07. . . $15.00

https://doi.org/10.1145/3105831.3105873

would be to encrypt the data stored in the cloud database, however,

this limits the provider’s ability of processing the data to answer

complex queries by the user. For this reason, this work proposes a

separation of duties approach to face this problem. Generally, the

term separation of duties means that a specific task is handled by

multiple entities to prevent malicious behavior which could be car-

ried out by a single entity in control of the whole task. In the context

of preserving confidentiality in cloud databases, this is based on the

observation that in many scenarios data only becomes sensitive in

association with other data. By distributing the data among multi-

ple database servers with a technique called vertical fragmentation,
these sensitive associations can be broken up such that each server

only maintains an insensitive portion of the data. As long as the

servers are not collaborating to reestablish the association, this

separation of duties approach ensures the privacy of the underlying

data. As the data is outsourced in plaintext the servers’ ability of

performing complex computations is not limited and therefore this

approach enables users to perform arbitrary queries on the data.

However, this clearly involves that data has to be gathered from

the different servers when querying for it and therefore additional

query rewriting and optimization steps are necessary.

It is a challenging task to decide how the data is distributed

among the servers. On the one hand, the security requirements

have to be met but on the other hand the number of involved servers

should be relatively small to limit the costs for the user and ensure

efficient querying. Therefore, the proposed separation of duties

approach can be viewed as a typical mathematical optimization

problem. In this paper we analyze three variations of this problem in

a multi-relational environment. Moreover, we present a prototype

implementation which is capable of distributing databases among

different servers and which appropriately analyzes and rewrites

arbitrary SQL queries.

In detail, we make the following contributions:

• We analyze vertical fragmentation of multiple relations as a

technique to protect data confidentiality in cloud databases

and devise a formulation as a mathematical optimization

problem. In contrast to prior work we explicitly allow multi-

ple non-communicating servers in the problem and consider

the minimization of the number of servers as an optimization

goal.

• Moreover, visibility constraints and novel closeness con-

straints are introduced to improve the usability of the result-

ing fragmentations and to allow for efficient query answer-

ing. Those constraints are modeled as soft constraints – in

https://doi.org/10.1145/3105831.3105873
https://doi.org/10.1145/3105831.3105873

IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom Ferdinand Bollwein and Lena Wiese

contrast to the confidentiality constraints which are manda-

tory to satisfy. As a further extension, data dependencies

among tables are considered.

• Lastly, a prototype implementation (using the feature of

Foreign Data Wrappers in PostgreSQL) is presented which

relies on a highly optimized off-the-shelf Integer Linear Pro-

gram (ILP) solver to find the optimal fragmentation. It allows

users to cast queries as if they would query the original non-

fragmented database; this relieves the user from rewriting

queries to act on fragments instead of the original tables. This

implementation is further tested with a well-known data

set (TPC-H) and under two scenarios (view-based querying

versus query rewriting). To the best of our knowledge this

is the first comprehensive benchmark of a confidentiality-

preserving vertical fragmentation approach with a TPC data

set.

We start this article with a survey of related work in Section

2. Section 3 sets the necessary terminology; Section 4 analyzes

the theory of several Separation of Duties problems; Section 5

provides a translation into an integer linear program; Sections 6 and

7 describe the implementation and evaluation; Section 8 concludes

the article.

2 RELATEDWORK
Security and privacy have been challenging tasks ever since the in-

troduction of the principle of data outsourcing and a lot of research

has been carried out to address different aspects of this problem

such as access control, data confidentiality and data integrity. Secu-

rity can be achieved by encryption – carried out by the user before

outsourcing the data to the database. Still, encryption operations

are generally very costly and moreover, existing cryptographic

techniques can still not be efficiently used to evaluate more com-

plex queries like, for instance, computations on the data. In this

paper we focus on data confidentiality by data fragmentation and

distribution without encryption; however our proposed approach

can indeed be combined with conventional encryption (as in [1]) or

even novel encryption approaches (as for example order-preserving

encryption in [17] or a combination of several encryption types in

[16]).

Aggarwal et al. were the first ones to propose vertical fragmentation

as a technique to distribute a database table by columns (attributes)

among servers to ensure confidentiality in [1]. They model sen-

sitive associations between columns of a single database table as

subsets of columns and distribute the table vertically among two

distinct honest-but-curious, non-communicating servers to break

these sensitive associations. Additionally, they rely on encryption

whenever it is impossible to meet the confidentiality requirements

with those two servers only.

Ciriani et al. consider a similar scenario but waive encryption com-

pletely in [8] and [4]. To do so, a database table is distributed ver-

tically among an untrusted remote and a trusted local database

server. Their aim is to store a minimal subset of columns in the lo-

cal database such that the remaining set of columns which is stored

at the untrusted server is insensitive. Therefore, their approach is

also called a keep-a-few approach.

Other proposals such as [5–7, 9, 11–13] use vertical fragmentation

as a tool to split sensitive associations in a database table. It is re-

quired that those fragments do not have an attribute in common

such that the fragments are unlinkable. Due to the unlinkability, the
fragments can possibly be stored at a single untrusted server which

is then in possession of all the data but cannot establish sensitive

associations.

In [13] the concept of data dependencies is introduced. The authors
state that certain combinations of attributes can be used by a sophis-

ticated untrusted server to draw conclusion about other attributes

which could potentially lead to the exposure of sensitive data.

Expressive constraints and dependencies in first-order logic have

previously been analyzed in [2] for vertical as well as in [18] for

horizontal confidentiality-preserving fragmentations.

3 BACKGROUND
We focus on the relational database model as the most common

model for databases. As usual, a relation schemaR ({a1, . . . ,an }), or
simply R (a1, . . . ,an), consists of a relation name R and a finite set

of attributes {a1, . . . ,an } with n ≥ 1. Each attribute ai is associated
with a specific domain which is denoted by the expression dom(ai).
Next, a relation r , also denoted by r (R), over the relation schema

R(a1, . . . ,an) is defined as an ordered set of n-tuples r = (t1, . . . , tm)

such that each tuple r j is an ordered list tj = v1, . . . ,vn of values

vi ∈ dom(ai) or vi = NULL. The degree of a relation is defined as

the number if attributes in r .
A database schema D = {R1(A1), . . . ,RN (AN)} is defined by a

name D and a set of relation schemes Ri (Ai) where Ai denotes
the corresponding set of attributes. Finally, a database state d =
{r1, . . . , rN } over a database schema D = {R1(A1), . . . ,RN (AN)}

is a set of relations such that each ri is a relation over the respective

relation schema Ri (Ai).
As a tuple identifier tids for relation schema Rs a subset of As

is chosen that is a candidate key. Formally, if rs is a relation over

the schema Rs (As) and tids ⊆ As , for the two tuples t1, t2 ∈ rs the
following holds

t1[tids] = t2[tids] ⇒ t1 = t2

The set of all tuple identifiers is denoted by tid B
⋃N
s=1 tids .

To illustrate the individual steps, a small database consisting of

two tables in a hospital scenario serves as a running example. The

first table stores information about doctors and the second table

stores information about patients:

D = {D(DocID,Name,DoB,ZIP, Specialty),
P(PatID,Name,DoB,ZIP,Diagnosis, Treatment,DocID)}

where DocID and PatID serve as tuple identifiers.

4 SEPARATION OF DUTIES PROBLEMS
The presented separation of duties approach aims at protecting

confidentiality. Hence, analogous to [1] and [8] we assume that

Cloud service providers are “honest but curios”. This means that

servers handle requests and answer queries correctly; but, while

they do not manipulate the stored data, still they analyze data and

user behavior and try to gain sensitive information from it.

In order to express security policies, we have to specify which

attribute combinations are secret. In a database containing multiple

relations, sensitive associations can exist among relations. This is

Separation of Duties as an Optimization Problem IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom

expressed in the following definition of multi-relational confiden-

tiality constraints:

Definition 4.1. (Multi-Relational Conf. Constraints) Let

A1, . . . ,AN denote pairwise disjoint sets of attributes. Moreover,

let D = {R1(A1), . . . ,RN (AN)} be a database schema and d =
{r1, . . . , rN } a database state overD. Amulti-relational confidential-
ity constraint on D is defined by a subset of attributes c ⊆

⋃N
s=1As .

A multi-relational confidentiality constraint c with |c | = 1 is called

a singleton constraint. If |c | > 1 it is called an association constraint.

The condition that the set of attributes are pairwise disjoint is

introduced to assure that attributes can uniquely be associated with

the according relation schema. In reality, this can easily be achieved

by choosing a suitable naming convention. For example the names

of the relations could be prepended to the attributes.

Vertical fragmentation is used to meet the security requirements

expressed by the confidentiality constraints. Completeness ensures

that the original data can be reconstructed. Disjointness avoids

duplicate storage of attributes in different fragments; the only ex-

ception being the tuple identifiers which are needed to recombine

the data as required by the reconstruction property.

Definition 4.2. (Multi-Relational Vertical Fragmenta-
tion, cardinality, physical fragments) Let A1, . . . ,AN
denote pairwise disjoint sets of attributes. Furthermore, let

d = {r1, . . . , rN } be a database state over the database schema

D = {R1(A1), . . . ,RN (AN)}. A set f = (f0, . . . , fk) where

fj ⊆
⋃N
s=1As for all fj is called a correct (multi-relational) vertical

fragmentation of d if the following conditions are met:

• Completeness:
⋃k
i=0 fj =

⋃N
s=1As

• Disjointness: fi ∩ fj ⊆ tid, ∀ fi , fj with fi , fj , ∅

• Reconstruction: tids ⊂ (fj ∩As), if fj ∩As , ∅

A fragmentation that satisfies all properties except the disjointness

is called a lossless (multi-relational) vertical fragmentation of r . The
cardinality of a vertical fragmentation Card(f) is defined as the

number of nonempty elements in f : Card(f) =
∑k

j=0
fj,∅

1.

For fragment fj , its multirelational physical fragment is the set of
projections

dj B {πfj∩A1
(r1), . . . ,πfj∩AN (rN)}

which is a database over the database schema D j = {R1(fj ∩
A1), . . . ,RN (fj ∩ AN)}. The individual relations πfj∩As (rs) for

s ∈ {1, . . . ,N } are called relation fragments.

In this definition the completeness property ensures that every

attribute is contained in at least one fragment. The reconstruction

property makes sure that a fragment contains all necessary tuple

identifiers to reconstruct the original relations by joining the corre-

sponding relation fragments. The disjointness property prevents

unnecessary copies of non-tuple identifier attributes. We now dis-

cuss three variants of separation of duties by vertical fragmentation.

4.1 Standard Separation of Duties
As a minimum, confidentiality-preserving fragmentations must

obey security policies by ensuring that not all attributes contained

in a confidentiality constraint at the same time. The exception is

the owner fragment that is stored on the trusted client side and

contains all singleton constraints as well as subsets of association

constraints if they cannot be satisfied by distributing their attributes

among several server fragments.

Definition 4.3. (Confidentiality) A vertical fragmentation f =
(f0, . . . , fk) is confidentiality-preserving with respect to a set of

confidentiality constraints C if the following condition is met:

c * fj for all c ∈ C and j ∈ {1, . . . ,k}

In this definition f0 is the owner fragment (to be stored at the

trusted database server) and f1, . . . , fk are the k server fragments

(to be stored at the k untrusted database servers). A confidentiality-

preserving vertical fragmentation therefore requires that the com-

bination of attributes defined by a confidentiality constraint is not
jointly visible in a server fragment. For singleton constraints, this

implies that the corresponding attributemust be placed in the owner

fragment.

To avoid redundancy and unwanted interactions with the tuple

identifiers, we impose some restrictions on the set of confiden-

tiality constraints. In particular, tuple identifiers are assumed to

be harmless information and hence should not be contained in

confidentiality constraints.

Definition 4.4. (Well-defined Conf. Constraints) Let

A1, . . . ,AN denote pairwise disjoint sets of attributes and let

tids ⊂ As denote the designated tuple identifier for A1, . . . ,AN
respectively. Moreover, let d = {r1, . . . , rN } denote a database

state over the database schema D = {R1(A1), . . . ,RN (AN)}. A set

of confidentiality constraints C is well-defined if it satisfies the

following conditions:

• c * c ′ for all c, c ′ ∈ C with c , c ′

• c ∩ tids = ∅ for all c ∈ C and s ∈ {1, . . . ,N } with c ⊆ As

The first condition requires that no confidentiality constraint c is
a subset of another c ′ – due to the requirements for a confidentiality-

preserving multi-relational vertical fragmentation, the restriction

that c is not jointly visible in any server fragment already implies

that c ′ is not jointly visible in any server fragment.

The second condition of the previous definition further implies

that confidentiality constraints c that contain only attributes from a

single relation are not allowed to contain tuple identifier attributes

if they contain at least one non-tuple identifier attribute. Such

constraints can simply be replaced by the semantically equivalent

constraints c \tids . This will avoid unnecessary case differentiations
in the remainder of this work.

As a last component, we specify a weight function that assigns

a weight to each set of attributes: wd : P(A) −→ R+. A simple

weight function could for example count the number of attributes

in the set. We then consider a maximum capacityWj for each server

Sj and require that the summed weights of the fragment does not

exceed the capacity of the server that hosts this fragment.

With these preliminaries the definition of the (Standard) Multi-

relational Separation of Duties Problem is as follows:

Definition 4.5. (Multi-relational Separation of Duties)Given
a database schema D = {R1(A1), . . . ,RN (AN)}, a database state

d = {r1, . . . , rN }, a well-defined set of multi-relational confidential-

ity constraints C , tuple identifiers tids ⊂ As for all s ∈ {1, . . . ,N },

IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom Ferdinand Bollwein and Lena Wiese

a weight functionwd , servers S0, . . . , Sk and corresponding max-

imum capacitiesW0, . . . ,Wk ∈ R+
0
, find a correct confidentiality-

preserving fragmentation f = (f0, . . . , fk) of minimal cardinality

Card(f) such that the capacities of the storage are not exceeded, i.e.

wd (fj) ≤Wj for all 0 ≤ j ≤ k .

Themaximum capacityW0 of the owner fragment can be set such

that the owner fragment only stores the attributes in the singleton

constraints – which cannot be outsourced due to their sensitivity.

This can be achieved by choosing a suitable capacity of the owner

fragment. Yet, it must be considered that the correct tuple-identifier

attributes must also be part of the owner fragment to satisfy the

reconstruction property. Therefore, if A∗ B {c ∈ C | |c | = 1}

denotes the set of all sensitive attributes, the right choice forW0 is

given by:

W0 =
∑

s :As∩A∗,∅

wd (tids) +
∑

c ∈C : |c |=1

wd (c).

We just mention that the Standard Separation of Duties Prob-

lem can be viewed as a combination of two famous NP-hard prob-

lems, the bin packing problem due to the capacity constraints of

the storage locations and the vertex coloring problem due to the

confidentiality constraints. Both problems would be suitable for a

NP-hardness proof. Due to space restrictions we do not state the

proof in this paper.

Continuing our example, for confidentiality constraints

C = {{P.Name}, {D.Name}, {P.DoB, P.ZIP, P.Diagnosis},
{D.DoB, D.ZIP}}

a confidentiality-preserving fragmentation consists of one owner

fragment

{P0(PatID,Name),D0(DocID,Name)}

and two server fragments

{P1(PatID,DoB,DocID),D1(DocID,ZIP)} and
{P2(PatID,ZIP,Diagnosis, Treatment),D2(DocID,DoB,

Specialty)}.

4.2 Visibility and Closeness
In the multi-relational scenario it is very important to control the

resulting fragmentations to increase the usability of the fragmented

database. Increased usability means that certain combinations of at-

tributes are stored on a single server because they are often queried

together. The notion of visibility constraints will be adapted to this

scenario: visibility constraints are defined as subsets of attributes

that should be placed in a single fragment if possible. Formally, the

definition of visibility constraints is as follows:

Definition 4.6. (Visibility constraint, satisfaction) Let d =
{r1, . . . , rN } be a database state over the database schema D =
{R1(A1), . . . ,RN (AN)}. A (multi-relational) visibility constraint
over D is a subset of attributes v ⊆

⋃N
s=1As . A multi-relational

fragmentation f = (f0, . . . , fk) satisfies v if there is an 0 ≤ j ≤ k
such that v ⊆ fj . If such an fj exists, define Satv (f) B 1. Other-

wise, define Satv (f) B 0. For any set V of visibility constraints, the

number of satisfied visibility constraints is

SatV (f) B
∑
v ∈V

Satv (f)

Note that as opposed to other approaches we treat visibility

constraints as soft constraints; that is, conflicts in the specification

are allowed and visibility constraints will be satisfied only if the

confidentiality can still be ensured. Hence, it may happen that not

all visibility constraints can be satisfied. However, even in the case

of an unsatisfied visibility constraint, we want to reduce the amount

of servers on which a set of attributes is distributed.

For example, focusing only on our patient example table, a visibil-

ity constraintv = {DoB,ZIP,Diagnosis} is introduced while to pre-
serve the privacy of the patients, the confidentiality constraint c =
{DoB,ZIP} is enforced. However, because c ⊂ v , the visibility con-

straint cannot be satisfied. Hence, one possible solution to the prob-

lem is given by f = { f0, f1, f2, f3} with: f0 = ∅, f1 = {PatID,DoB},
f2 = {PatID,ZIP, Treatment}, f3 = {PatID,Diagnosis}.

Another possible solution is given by the fragmentation f ′ =
{ f ′

0
, f ′

1
, f ′

2
, f ′

3
} with: f ′

0
= ∅, f ′

1
= {PatID,DoB}, f ′

2
=

{PatID,ZIP,Diagnosis}, f ′
3
= {PatID, Treatment}.

The important thing to notice here is that in f the attributes in
v are spread among three and in f ′ among only two servers. As

a result, a query for the three attributes DoB, ZIP and Diagnosis
involves three servers for the first fragmentation and only two for

the second. Hence, the query will be processed faster for the second

fragmentation.

To achieve a lower distribution of attributes, we introduce the

novel notion of closeness constraints. With these constraints it can

be assured that certain sets of attributes are not spread arbitrar-

ily among the fragments which reduces the setup time and the

overhead for query answering. For example, we could express a

closeness constraint as γ = {DoB,ZIP,Diagnosis} which enables

us to reduce the number of fragments among which this subset of

attributes is distributed and hence f ′ is a better solution than f .

Definition 4.7. (Closeness constraint, distribution) Let d =
{r1, . . . , rN } be a database state over the database schema D =
{R1(A1), . . . ,RN (AN)}. A closeness constraint over D is a subset of

attributes γ ⊆
⋃N
s=1As . Let f = (f0, . . . , fk) be a vertical fragmen-

tation of d , the distribution Distγ (f) of γ is defined as the number

of fragments that contain one of the attributes in γ :

Distγ (f) B
k∑
j=0

fj∩γ,∅

1

For any set Γ of closeness constraints the distribution DistΓ(f) is
defined as the sum of distributions of γ ∈ Γ:

DistΓ(f) B
∑
γ ∈Γ

Distγ (f)

The minimization of the distribution of the closeness constraints

will be the third goal in the following Extended Multi-relational

Separation of Duties problem. However, minimizing the number of

servers, maximizing the number of fulfilled visibility constraints

and minimizing the distribution of the closeness constraints are

three separate goals that are not complementary. Hence, a balance

has to be found between them. Therefore, the objective stated in the

problem definition is expressed as a weighted sum of these three

goals using three weights α1, α2, α3. On the other hand of course,

satisfying the confidentiality constraints will still be mandatory.

Separation of Duties as an Optimization Problem IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom

Notably, omitting the disjointness property of fragmentation helps

increase the number of fulfilled visibility constraints. Therefore, in

the following problem statement, only a lossless fragmentation is

required.

Definition 4.8. (Extended Multi-relational Separation of
Duties) Given a database state d = {r1, . . . , rN } over the database

schema D = {R1(A1), . . . ,RN (AN)}, a well-defined set of multi-

relational confidentiality constraints C , visibility constraints V , a
set of closeness constraints Γ, tuple identifiers tids ⊆ As for all

s ∈ {1, . . . ,N }, a weight function wd , storage spaces S0, . . . , Sk
with maximum capacitiesW0, . . . ,Wk ∈ R+

0
and positive weights

α1,α2,α3 ∈ R+
0
, find a lossless confidentiality-preserving frag-

mentation f = (f0, . . . , fk) of minimal cardinality which satis-

fies wd (fj) ≤ Wj for all 0 ≤ j ≤ k such that the weighted sum

α1 Card(f) − α2 SatV (f) + α3 DistΓ(f) is minimal.

Using the weighted sum serves three purposes:

(1) α1 Card(f) is responsible for minimizing the cardinality

(amount of fragments) of the fragmentation.

(2) By subtracting α2 SatV (f) each satisfied visibility constraint

will lower the overall objective.

(3) Distribution of the closeness constraints is minimized by

α3 DistΓ(f).

The obvious question arises of how to appropriately choose the

weights α1, α2 and α3. In the following lemma we suggest a choice

for the weights α1,α2 and α3 assigning highest priority to the min-

imization of the cardinality of the fragmentation. Among those

fragmentations the number of satisfied visibility constraints should

be maximal and again among those fragmentations the distribution

of the closeness constraints should be minimized.

Lemma 4.9. Consider weights α1 > 0, α2 > 0 and α3 > 0 satisfy-
ing (1) α2 |V | + α3k |Γ | < α1 and (2) α3k |Γ | < α2. If f is a solution to
the Extended Multi-Relational Single-Relational Separation of Duties
Problem and f ′ is a lossless confidentiality-preserving fragmentation
that does not violate the capacity constraints wd (fj) ≤ Wj for all
0 ≤ j ≤ k , the following three statements are true:

(1) Card(f ′) ≥ Card(f)
(2) If Card(f ′) = Card(f), then SatV (f) ≥ SatV (f ′)
(3) If Card(f ′) = Card(f) and SatV (f) = SatV (f ′), then

DistΓ(f) ≤ DistΓ(f ′)

4.3 Dependencies
De Capitani di Vimercati et al. [13] have explored the technique of

fragmentation to ensure data confidentiality in presence of depen-

dencies among columns. Such dependencies can enable a server

to deduce much more information even though it only stores frag-

ments of a confidentiality-preserving fragmentation. Dependencies

on the patient table could for example be DoB,ZIP Name (that
discloses the name of a patient from the date of birth and zip code)

or Treatment Diagnosis (that discloses a diagnosis from the

treatment). De Capitani di Vimercati et al. explore this problem

only in a single-relational environment. For our application, the

definitions and theories will be translated into a multi-relational

context.

Definition 4.10. (Data Dependency) For a given database

schema D = {R1(A1), . . . ,RN (AN)} a dependency δ over D is an

expression of the formX Y , withX ,Y ⊂
⋃N
s=1As andX ∩Y = ∅.

The left hand side of a dependency δ is called the premise while the

right hand side is called the consequence of δ . For simplicity, the

notations δ .premise and δ .consequence (or δ .p and δ .c , for short)
are used to denote the respective part of the dependency.

A simple approach to make the information disclosed by depen-

dencies visible in a fragment is adding the implied attributes to

the fragment (this approach is called fragment and dependency

composition in [13]):

Definition 4.11. (Dependency Composition) For database

schema D = {R1(A1), . . . ,RN (AN)}, a subset fj ⊆
⋃n
s=1As of

attributes and a set ∆ of dependencies, the composition of fj with
dependency δ ∈ ∆ is the set of attributes:

fj ⊗ δ =

{
fj ∪ δ .consequence, if δ .premise ⊆ fj

fj , else

Next, in [13] the closure of a set of attributes is a superset that is

immune to dependency composition:

Definition 4.12. (Closure) Let A1, . . . ,AN denote pairwise dis-

joint sets of attributes and let d = {r1, . . . rN } be a database state

over the schema D = {R1(A1), . . . ,RN (AN)}. Moreover, let ∆ de-

note a set of dependencies. For any subset f ⊆
⋃n
s=1As of attributes

the closure with respect to δ is defined as the minimal set f which

satisfies f ⊆ f ⊆
⋃N
s=1As and for all δ ∈ ∆ it holds that f ⊗ d = f .

If the subset f satisfies f = f it is called closed.
If f = (f0, . . . , fk) denotes a lossless/correct fragmentation of d
the closure of that fragmentation with respect to ∆ is defined as

f B
(
f
0
, . . . , f k

)
. A fragmentation for which every server frag-

ment fj ∈ { f1, . . . fk } is closed is called a closed fragmentation.

It is generally not possible to find a closed correct fragmentation

satifying the disjointness property. Hence, the following problem

statement focuses on finding a closed lossless multi-relational frag-

mentation.

Definition 4.13. (Multi-relational Separation of Duties in
Presence of Data Dependencies) Given a database state

d = {r1, . . . , rN } over the given database schema D =

{R1(A1), . . . ,RN (AN)}, tuple identifiers tids ⊂ As for all s ∈

{1, . . . ,N }, a well-defined set of multi-relational confidentiality

constraints C , visibility constraints V , a set of closeness con-

straints Γ, a set of dependencies ∆, a weight functionwd , servers

S0, . . . , Sk with maximum capacitiesW0, . . . ,Wk ∈ R+
0
and positive

weights α1,α2 and α3 ∈ R+
0
, find a closed lossless confidentiality-

preserving fragmentation f = (f0, . . . , fk) of d which satisfies

wd (fj) ≤ Wj for all 0 ≤ j ≤ k such that the weighted sum

α1 Card(f) − α2 SatV (f) + α3 DistΓ(f) is minimized.

One might wonder, whether the condition that the fragmenta-

tion is closed will prevent finding a solution when a non-closed

confidentiality-preserving fragmentation exists that would solve

the problem. As opposed to [13], in our problem statement this could

be the case due to the capacity constraints. As every fragment fj is

a subset of its closure f j it also holds thatwd (fj) ≤ wd (f j). Hence,

IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom Ferdinand Bollwein and Lena Wiese

it is up to the user to make sure that the servers’ capacities are large

enough to find such a solution. On the other hand however, aside

from the capacity constraints, the restriction that the fragmenta-

tion is closed is not an issue: if f = (f0, . . . , fk) is a confidentiality-

preserving fragmentation, then its closure f =
(
f
0
, . . . , f k

)
is also

confidentiality-preserving. Therefore, it is always possible to find a

closed confidentiality-preserving fragmentation when there exists

a non-closed fragmentation that preserves confidentiality, how-

ever this closed fragmentation will potentially violate the capacity

constraints of the fragments even if the non-closed fragmentation

satisfied those.

For the Extended Multi-relational Separation of Duties Problem

it was recommended to choose the capacity of the owner fragment

such that it can only hold the attributes contained in singleton

constraints and the respective tuple-identifier attributes (see Section

4.1). When dependencies are taken into account however, using this

capacity could make the problem unsolvable because additional

attributes should be stored in the owner fragment because they

are sensitive on their own due to dependency. To illustrate this, a

dependency δ ∈ ∆ with |δ .premise | = 1 and δ .premise , c for all
c ∈ C is supposed. The premise contains a single attribute which

is not contained in a singleton constraint. At first glance, it seems

that this attribute is not sensitive on its own and therefore, the

attribute in δ .premise will not be placed in the owner fragment

when choosing the owner capacityW0 as described in Section 4.1.

Because the problem statement requires a closed fragmentation, the

server fragment that contains the attribute in δ .premise needs to
hold δ .consequence , too. Obviously, a problem arises if there exists a

confidentiality constraint c ∈ C with c ⊆ δ .premise∪δ .consequence
because the fragmentation obeyingW0 cannot be confidentiality-

preserving and therefore, no solution exists. Such situations occur

if the closure of an attribute is sensitive. Therefore, the actual set of

sensitive attributes is given by the union of the two sets A∗ B {c ∈

C | |c | = 1} and A∗∗ B
⋃N
s=1

{
asi ∈ As | ∃c ∈ C with c ⊆ {asi }

}
.

There are two possible solutions for this. The first one is to in-

troduce new confidentiality constraints c = {asi } for all a
s
i ∈ A∗∗

which is justified because those attributes can be regarded as sensi-

tive attributes. The other solution is to increase the capacity of the

owner fragment such that it holds all the attributes in A∗
and A∗∗

and the necessary tuple-identifier attributes to ensure the recon-

struction property of the fragmentation. This can be accomplished

by defining the capacity of the owner fragment as:

W0 =
∑

s :As∩(A∗∪A∗∗),∅

wd (tids) +
∑

a∈(A∗∪A∗∗)

wr (a),

5 ILP FORMULATION
We now translate the Multi-relational Separation of Duties Problem

in Presence of Data Dependencies into an ILP representation. All

indicator variables zv ,uv j ,qγ j ,pδ j ,yj and x
s
i j are binary. Moreover,

we establish the convention that s ∈ {1, . . . ,N }, asi ∈ As , a
s
i′ ∈ tids ,

j ∈ {0, . . . ,k}, c ∈ C , v ∈ V , γ ∈ Γ, δ ∈ ∆. The ILP then looks as

follows:

min α1

k∑
j=0

yj − α2
∑
v ∈V

zv + α3
∑
γ ∈Γ

k∑
j=0

qγ j (1)

s.t.

k∑
j=0

xsi j ≥ 1, (2)∑
asi ∈A

∗
s

xsi j ≤ xsi′j |A
∗
s |, (3)∑

asi ∈A
∗
s

xsi j ≥ xsi′j , (4)

N∑
s=1

∑
asi ∈As

wd (a
s
i)x

s
i j ≤Wjyj , (5)∑

asi ∈c

xsi j ≤ |c | − 1, (6)∑
asi ∈v

xsi j ≥ uv j |v |, (7)

k∑
j=0

uv j ≥ zv , (8)∑
asi ∈γ

xsi j ≤ |γ |qγ j , (9)∑
asi ∈δ .p

xsi j ≤ |δ .p | − 1 + pδ j , (10)∑
asi ∈δ .p

xsi j ≥ pδ j |δ .p |, (11)∑
asi ∈δ .c

xsi j ≥ pδ j |δ .c |, (12)

5.1 Translating confidentiality
Indicator variables xsi j ∈ {0, 1} are used to express that attribute

asi ∈ As from relation rs is placed on server j. For every s ∈

{1, . . . ,k} let A∗
s B As \ tid denote the set of non-tuple identi-

fiers of As . Binary variables y1, . . . ,yk ∈ {0, 1} are introduced

which take a value of one if fragment fj should be non-empty

and a value of zero otherwise. In the objective function (1) the

expression α1
∑k
j=0 yj minimizes the cardinality of the fragmenta-

tion. Condition (2) ensures that every attribute is placed in at least

one fragment satisfying the completeness property. Constraint (3)

conditions that if there is a non-tuple identifier attribute contained

in fragment fj , i.e. the left hand side of the inequality is greater

than one, then the right hand side must equal |A∗
s | which is fulfilled

if the variable xsi′j for the tuple identifier attribute a
s
i′ ∈ tids also

equals one and is hence also part of the fragment. The definition

of the reconstruction property of multi-relational fragmentation

requires that the tuple identifiers tids are proper subsets of the

fragments. Side constraint (4) takes care of this by allowing the

variables xsi′j for attribute a
s
i′ ∈ tids to equal one if at least one

variable xsi j belonging to a non-tuple identifier attribute asi ∈ A∗
s

equals one. Constraint (5) makes sure that the storage capacities are

not exceeded and that yj must take a value of one, whenever any

Separation of Duties as an Optimization Problem IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom

attribute asi is included in fragment fj . Lastly Condition 6 is used

to guarantee a confidentiality-preserving fragmentation, because

at most c − 1 variables xsi j for a
s
i ∈ c can be equal to one.

5.2 Translating visibility and closeness
Additional binary variables uv j are introduced for every visibility
constraint v ∈ V and fragment j ∈ {1, . . . ,k}. These variables

should only take a value of one if all attributes contained in v
are placed in fragment fj . Moreover, indicator variables zv for all

visibility constraints v ∈ V are used to indicate whether there is at

least one fragment that contains all attributes of visibility constraint

v ∈ V .

Furthermore, for every closeness constraint γ ∈ Γ and every

fragment fj ∈ {0, . . . ,k} binary variables qγ j are introduced to

indicate whether an attribute contained in γ is placed in γ . These
variables are used to determine the distribution of the closeness

constraints.

In the objective function (1) the summand −α2
∑
v ∈V zv maxi-

mizes the number of satisfied visibility constraints and the sum-

mand α3
∑
γ ∈Γ

∑k
j=0 qγ j minimizes the distribution of the closeness

constraints.

The constraints that ensure the proper treatment of the visibility

constraints are given by Conditions (7) and (8). The former ensures

that for every fragment fj and every visibility constraint v ∈ V
variable uv j can only be equal to one if the visibility constraint is

satisfied in fragment fj . The latter then makes sure that zv , the
indicator variable for visibility constraint v ∈ V , can only be equal

to one if there is at least one uv j for j ∈ {1, . . . ,k} that equals one,
i.e. visibility constraintv is satisfied on at least on server. Constraint

(9) ensures the proper behavior of the indicator variables qγ j which
indicate whether an attribute from closeness constraint γ ∈ Γ is

contained in fragment fj . qγ j can only be equal to zero if there is

no attribute asi ∈ Γ and no fragment fj for which the variable xsi j
equals one.

5.3 Translating dependencies
It can easily be seen that a server fragment fj equals its closure f j
if and only if for every data dependency δ ∈ ∆ one of the conditions

δ .p * fj or δ .p ∪ δ .c ⊆ fj is true [13]. Hence, to check whether a

server fragment fj is closed, one first has to check for every data

dependency δ ∈ ∆ if δ .p ∈ fi . In the ILP formulation indicator

variables pδ j ∈ {0, 1} we introduce for each data dependency δ ∈ ∆
and server j ∈ {1, . . . ,k} that should take a value of one if and only
if all attributes in δ .p are stored in server fragment fj . After that,
we have to make sure that if a dependency premise is contained

in a fragment the consequence must also be contained. Together,

Constraints (10) and (11) ensure that pδ j equals one if and only if

all attributes in δ .p should be placed into the same server fragment

fj .
Finally, Constraint (12) requires that all attributes in δ .c are part

of server fragment fj if all attributes in δ .p are part of fj : if pδ j is
equal to one the right hand side of the inequality takes the value

|δ .c |. In this case the constraint can only be fulfilled if the sum on

the right side is also |δ .c | which means that xsi j equals one for all

asi ∈ δ . On the other hand if pδ j equals zero the condition is always

fulfilled.

A solution to the Separation of Duties Problem in Presence of

Data Dependencies can be derived from a solution to this ILP by

constructing the fragments as follows:

fj B


N⋃
s=1

{asi ∈ As | xsi j = 1}, if yj = 1

∅, else

6 IMPLEMENTATION
There are the following entities involved in the system:

• Untrusted Database Servers: These servers store the

server fragments and can process queries involving their

respective fragment only. The individual physical fragments

are organized in database tables.

• Trusted Database Server: This server stores the owner

fragment and manages connections to the untrusted servers.

Most common DBMSs provide means to include database

tables stored at remote servers. In PostgreSQL for example,

this can be realized with so-called Foreign Data Wrappers
and MySQL provides the FEDERATED Storage Engine. This
enables the later presented distributed database client to

issue adequate high-level (possibly SQL) queries directly to

the trusted database server instead of issuing subqueries

to each individual database server and then calculating the

desired result. Instead, the built-in query processor of the

trusted database server will decide how the query is actually

optimized and executed.

• Distributed Database Client: The client acts as an addi-

tional layer between the database users and the database

servers. It computes the fragmentation using an ILP solver,

stores the metadata of the fragmentation (i.e. at which server

the columns are stored) and processes and rewrites user

queries such that they are based on fragments instead of

relations of the original database. The distributed database

client can either access the database servers directly if a

query exclusively involves columns of a single fragment or

it can issue queries to the trusted database server which

makes all other fragments stored at the untrusted databases

servers visible. Those queries are then analyzed by the data-

base system’s query processor which decides how the query

is internally executed by applying adequate optimization

techniques. Finally, the results of the queries are transferred

to the user.

The major advantage of the presented framework is that the only

component that we had to implement is the distributed database

client (available at [3]) that relies on the advanced query optimiza-

tion techniques already provided by today’s DBMS. The chosen

programming language is JAVA and the implementation relies on

the popular open source DBMS PostgreSQL. Therefore, the trusted

database server and the untrusted database servers need to run

a standard installation of PostgreSQL. To solve the ILPs the IBM

ILOG CPLEX solver is used. Lastly, to analyze and rewrite the users’

queries, the distributed database client uses the open source project

JSQLParser which is a SQL parser for JAVA. After solving the ILP

using the CPLEX solver, the distributed database client continues

with creating databases on the necessary database servers to store

IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom Ferdinand Bollwein and Lena Wiese

the respective physical fragments. In particular, a new database is

set up at the trusted database server to store the owner fragment.

Subsequently, the table fragments are set up and populated with

the data from the original database. Using the foreign data-wrapper

module postgres_fdw, the tables stored at the untrusted servers are

made visible in the newly created database at the trusted server.

Therefore, the database at the trusted database server contains each

of the table fragments either as a local table if the fragment is part

of the owner’s physical fragment or as foreign table, otherwise.

As a final step, the distributed database client sets up views in the

database of the trusted database server using the local and foreign

tables which correspond to the tables of the original database.

7 EVALUATION
The prototype implementation is tested with the popular TPC-H

benchmark for databases [15]. The database defined by the TPC-H

benchmark consists of 8 tables and an overall number of 61 columns.

The benchmark also includes 22 complex SQL queries which are

interesting to test the implementation’s capability in terms of query

processing.

All of the tests were executed on a single PC equipped with

an Intel Xeon E3-1231v3 @ 3.40GHz (4 Cores), 32GB DDR3 RAM

and a Seagate ST2000DM001 2TB HDD with 7200 rpm. The PC is

running Ubuntu 16.04 LTS. The database servers – including the

trusted database server hosting the owner fragment – are running

in separate, identical virtual machines which are assigned 4 cores

and 8GB of RAM. The virtual machines are running Ubuntu Server

16.04 LTS with an instance of PostgreSQL 9.6.1 installed. By running

the servers in identical virtual machines, it is guaranteed that the

results are not influenced by hardware or software differences.

Lastly, the CPLEX version used by the implementation is CPLEX

12.7.

To set up the test database, the HammerDB [14] tool was used

with a scale factor of 1. Moreover, the query generator provided by

DBT-3 [10] was used to obtain 22 TPC-H-like queries conforming

with PostgreSQL’s standard.

7.1 Settings
The number of tables in the TPC-H database is reasonably small,

so that the following artificial scenario is used as the foundation

for the tests:

• Confidentiality Constraints: The following rules are es-

tablished for defining the constraints:

– The name and the account balance of the customers and

suppliers are sensitive:

c1 = {customer .c_acctbal},
c2 = {supplier .s_acctbal}

– The discount given on any order is sensitive:

c3 = {lineitem.l_discount}
– A customer’s name and its address cannot be placed in

the same server fragment:

c4 = {customer .c_name, customer .c_address}
– A customer’s name can not be associated with a specific

order:

c5 = {customer .c_name,orders .o_custkey}

– A supplier’s name can not be associated with a line item:

c6 = {supplier .s_name, lineitem.l_suppkey}
– The date of an order can not be associated with the total

price:

c7 = {orders .o_odate,orders .o_totalprice}
– A supplier’s name can not be associated with the supplier’s

cost for a specific part:

c8 = {supplier .s_name,partsupp.ps_suppkey,partsupp.
ps_supplycost}

• Dependencies: Moreover, the following dependencies are

introduced, concerning personal information about the cus-

tomers and suppliers:

δ1 = {customer .c_address} {customer .c_name}

δ2 = {customer .c_phone} {customer .c_name}

δ3 = {supplier .s_address} {supplier .s_name}

δ4 = {supplier .s_phone} {supplier .s_name}

• Visibility Constraints: As the main purpose of visibility

constraints is to speed up the execution of specific queries, a

visibility constraint is introduced for each of the 22 queries

consisting of all attributes in the query. Therefore, if a visibil-

ity constraint is satisfied, the execution of the corresponding

query potentially involves a single database server only.

• Closeness Constraints: A closeness constraint is intro-

duced for every table – containing all the of the correspond-

ing attributes – to limit the number of overall table fragments

that have to be created.

The weights α1, α2 and α3 that are also needed for the problem

statement are chosen to satisfy the system of inequalities presented

in Lemma 4.9. Finding an optimal solution to this specific instance

of the Multi-relational Separation of Duties Problem and setting up

the vertically fragmented database takes around two and a half min-

utes and the resulting fragmentation satisfies 5 of the 22 visibility

constraints. Overall, the tables are distributed among 12 table frag-

ments on a total of 3 database servers. One of those is the trusted

database server and the remaining two are untrusted.

7.2 Test runs
After the database is set up, the execution time of the 22 queries can

be analyzed. For that, each query is executed with the following

methods:

(1) The original non-fragmented database is queried. To ensure

the comparability, the original database is stored separately

at the trusted database server.

(2) The queries are rewritten by our trusted database client to

act on table fragments instead of the original tables.

(3) Instead of rewriting, the queries are cast to specific views

set up in the trusted database server to recreate the original

tables.

(4) If a query can be evaluated by a single database server (be-

cause it physically stores all the involved attributes), the

query is directly cast to this server.

Figure 1 summarizes the results of the test run. This evaluation

shows the major advantage of the separation of duties approach.

Because the columns of the tables are outsourced in plaintext, every

Separation of Duties as an Optimization Problem IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom

Figure 1: Runtime results for TPC-H queries

query can potentially be executed. However, two of the queries,

namely Q17 and Q20, were canceled because the timeout limit (30

minutes) was exceeded. Yet, the reason why these queries take so

much time is not related to the vertically fragmented database as

the timeout was also reached for the original non-fragmented data-

base. Therefore, it can be concluded that there is some issue related

to PostgreSQL which cannot find an adequate execution plan for

those queries. As it was suspected, queries Q11,Q12,Q13 and Q16

that can be evaluated in a reasonable amount of time by a single
server of the fragmented database can be executed in about the

same time as in the non-fragmented database. For these 4 queries,

a visibility constraint could be satisfied which perfectly illustrates

the benefits of introducing those constraints. Interestingly, query

rewriting and using views performed considerably worse for three

of those 4 queries (Q11,Q12,Q13). This is especially noticeable be-

cause rewriting the query also leads to a situation where the query

involves only one database server but this is obviously not detected

by PostgreSQL in conjunction with the foreign data wrapper exten-

sion postgres_fdw. This observation justifies a prior analysis of the

queries as implemented in our distributed database client.

There is one query, Q21, for which the execution time on the frag-

mented database is lower than the execution time for the non-

fragmented database. For this query, the fragmented database prob-

ably profited from a better execution strategy that could be estab-

lished by PostgreSQL due to the query rewriting or the use of the

views. However, we assume that such situations occur very rarely

in practice and are caused by PostgreSQL’s execution strategy.

An interesting thing to notice is that query rewriting outperformed

querying the views 13 times; querying the views was better for only

7 queries. Even more interesting, rewriting the queries performed

better in 9 out of 12 times (ignoring the canceled queries) when

the number of involved table fragments was lower than for the

views. This illustrates the advantage of query rewriting over using

views because unnecessary table fragments can be omitted with the

former method. The overhead introduced by rewriting the queries

is very small for all of the queries compared to the execution time

and can therefore be neglected. Consequently, one can conclude

that query rewriting is generally the better strategy than using

views. However, if for some reason a rewritten takes very long to

process, querying the views can potentially lower the execution

time. An example for such a situation is query Q19.

8 CONCLUSION
In this article, a separation of duties approach, based on vertical

fragmentation, was presented to address the problem of preserving

confidentiality in cloud databases. The confidentiality constraints

and data dependencies are capable of expressing a wide range

of confidentiality concerns that appear in the context of cloud

databases. Moreover, visibility constraints and closeness constraints

were introduced to increase the usability of the resulting vertically

fragmented database. Mathematical optimization is a natural way of

modeling the underlying Separation of Duties Problem and one can

rely on existing solution strategies to obtain usable, confidentiality-

preserving vertical fragmentations. The provided implementation

shows that vertically fragmented databases can be set up with a

IDEAS ’17, July 12-14, 2017, Bristol, United Kingdom Ferdinand Bollwein and Lena Wiese

relatively small effort such that vertical fragmentation is in fact

a viable technique to preserve confidentiality in cloud databases

in practical scenarios which allows the execution of queries of

arbitrary complexity.

REFERENCES
[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani,

U. Srivastava, D. Thomas, and Y. Xu. Two can keep a secret: A distributed

architecture for secure database services. In The Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005), 2005.

[2] J. Biskup, M. Preuß, and L. Wiese. On the inference-proofness of database

fragmentation satisfying confidentiality constraints. In ISC, volume 7001 of

Lecture Notes in Computer Science, pages 246–261. Springer, 2011.
[3] F. Bollwein. CloudDBSOD Client. http://www.uni-goettingen.de/de/558180.html.

[4] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and

P. Samarati. Selective data outsourcing for enforcing privacy. Journal of Computer
Security, 19(3):531–566, 2011.

[5] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati.

An OBDD approach to enforce confidentiality and visibility constraints in data

publishing. Journal of Computer Security, 20(5):463–508, 2012.
[6] V. Ciriani, S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Fragmentation and encryption to enforce privacy in data storage. In European
Symposium on Research in Computer Security, pages 171–186. Springer, 2007.

[7] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Fragmentation design for efficient query execution over sensitive distributed

databases. In ICDCS, pages 32–39. IEEE Computer Society, 2009.

[8] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Keep a few: Outsourcing data while maintaining confidentiality. In ESORICS,
volume 5789 of Lecture Notes in Computer Science, pages 440–455. Springer, 2009.

[9] V. Ciriani, S. D. C. D. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.

Combining fragmentation and encryption to protect privacy in data storage. ACM
Transactions on Information and System Security (TISSEC), 13(3):22, 2010.

[10] DBT-3. http://osdldbt.sourceforge.net/.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Fragments and loose associations: Respecting privacy in data publishing.

Proceedings of the VLDB Endowment, 3(1-2):1370–1381, 2010.
[12] S. D. C. di Vimercati, R. F. Erbacher, S. Foresti, S. Jajodia, G. Livraga, and P. Sama-

rati. Encryption and fragmentation for data confidentiality in the cloud. In

Foundations of Security Analysis and Design VII, pages 212–243. Springer, 2014.
[13] S. D. C. di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Sama-

rati. Fragmentation in presence of data dependencies. IEEE Transactions on
Dependable and Secure Computing, 11(6):510–523, 2014.

[14] HammerDB. http://www.hammerdb.com/.

[15] Transaction Processing Performance Council. TPC-H Benchmark Version 2.17.1.

http://www.tpc.org/tpch/.

[16] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical queries

over encrypted data. In Proceedings of the VLDB Endowment, volume 6, pages

289–300. VLDB Endowment, 2013.

[17] T. Waage, D. Homann, and L. Wiese. Practical application of order-preserving

encryption in wide column stores. In SECRYPT, pages 352–359. SciTePress, 2016.
[18] L. Wiese. Horizontal fragmentation for data outsourcing with formula-based

confidentiality constraints. In IWSEC, volume 6434 of Lecture Notes in Computer
Science, pages 101–116. Springer, 2010.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Separation of Duties Problems
	4.1 Standard Separation of Duties
	4.2 Visibility and Closeness
	4.3 Dependencies

	5 ILP formulation
	5.1 Translating confidentiality
	5.2 Translating visibility and closeness
	5.3 Translating dependencies

	6 Implementation
	7 Evaluation
	7.1 Settings
	7.2 Test runs

	8 Conclusion
	References

