
Noname manuscript No.
(will be inserted by the editor)

One DB Does Not Fit It All: Teaching the Differences in
Advanced Database Systems

Lena Wiese · Aboubakr Benabbas · Golnaz Elmamooz · Daniela Nicklas

the date of receipt and acceptance should be inserted later

Abstract In this article we report on our experience

with teaching differences that exist between relational

and non-relational data models. We present results of

an evaluation of a practical course in which students

are assigned 15 queries within 6 tasks that they exe-

cute on four different database systems. The pedagogi-

cal aim of this course was to show conceptual differences

between data models, difficulties that can occur when

trying to formulate queries in different query languages,

as well as specific system behavior. We present several

technical environments in which provided the database

systems over several years. We evaluate the practical

course based on a questionnaire that recorded the stu-

dents’ performance on each task for each DB system.

Keywords Database Systems · NoSQL · Teaching

Concept

1 Introduction and Related Work

In standard CS curricula the relational data model is a

major teaching topic. Accordingly, SQL databases are

presented in depth in order to teach relevant practi-

cal database competencies. The advantage of this ap-

proach is that most human beings are used to structur-

ing data into tables with a fixed amount of columns so

that the relational data model appears somewhat intu-

itive; moreover SQL has the advantage that it is an all-

round language to express versatile queries and that it

L. Wiese
Goethe-Universität Frankfurt am Main
E-mail: lwiese@cs.uni-frankfurt.de

A. Benabbas, G. Elmamooz, D. Nicklas
University of Bamberg
E-mail: [firstname.lastname]@uni-bamberg.de

is a mature standard. However in certain circumstances

it is inconvenient to “squeeze” your data into a tabu-

lar format and – following the theoretical specification

– applying database normalization steps. In particu-

lar, when applying the relational data model and SQL,

a database user might run into difficulties with sparse

and heterogeneous data (for example, unknown amount

and type of attributes at schema creation time), com-

plex network-structured data and nested data.

On this background we designed an Advanced Data

Management lecture combined with practical exercises.

Our purpose is to show pros and cons of other data

models in comparison to the relational one. The prac-

tical exercises were conceptualized with the aim to give

students a hands-on experience with a variety of both

data models as well as database access methodologies.

Similar activities are presented in [5] on conduct-

ing a NoSQL course over three years. Two databases,

MongoDB and Cassandra, were studied in detail to help

students make better decisions in their industrial work

life. Students were provided with individual and team-

work assignments to work on the mentioned databases

from different aspects (like query-driven data modeling,

sharding and replication, and geospatial related con-

cepts). In the end, the students were asked to evaluate

the whole teaching concepts and targets of the course

using a general survey. Another brief use case (only em-

ploying CouchDB) is described in [2]. In comparison to

these approaches, our concept covers a more compre-

hensive treatment of the differences of data models on

CS Master level and covers a wider range of database

systems comparatively. Moreover, we present the novel

concept of unsolvable tasks with regard to specific data

models and DBSs. This reflects the situation in which

an engineer should solve a certain task with a given

non-standard DB, and she does not know upfront if



2 Lena Wiese et al.

it can be implemented with a simple query or needs

a tedious work-around in the application. This compe-

tency is rarely covered by university courses, where stu-

dents can always assume that tasks are solvable when

assigned in a course. However, to keep the workload

bounded, we give a maximum time for each task.

In this paper we present the underlying concept

(Section 2) for the Advanced Data Management course

and a use case (Section 3) for practical exercises that in

our opinion is ideal to show (dis-)advantages of specific

categories of database systems. We compare three alter-

native system environments (Section 4) for setting up

the database systems and enabling user access to them.

We describe the special situation of a full online course

in Summer Term 2020 (Section 5). Lastly we present

the evaluation of student feedback (Section 6).

2 Teaching Concept

We first survey the teaching concept of the course and

discuss how lecture, exercises, and exam tasks are de-

signed based on competencies and learning outcomes.

2.1 Competencies

According to the European Qualifications Framework

(EQF), a ‘competence’ means the proven ability to use

knowledge, skills and personal, social and/or method-

ological abilities, in work or study situations and in

professional and personal development [1]. Following a

competency-oriented design, learning outcomes are not

defined based on a list of lecture contents, but by com-

petencies that students can achieve when completing

the course. As per the EQF definition, competencies

depend on the situations in which they will be used.

For a database course, we defined four major target

situations, which can occur both in study or work and

are relevant both for industry or research situations.

1. For a given set of requirements or tasks, a database

system needs to be chosen, e. g., at the beginning of

a new software project or data science project.

2. A database system should be used to solve tasks

which it was designed or chosen for.

3. While solving tasks with a database system, one

must understand the behavior (e. g., query execu-

tion performance) based on knowledge about the

internal implementation of the system.

4. A database system should be able to solve new types

of tasks which were unknown when it was chosen.

Notably we use the term task instead of query : A task

is the problem that should be solved supported by the

database. Depending on the database system and its

query capabilities, it can be more or less supported by

queries; whatever is left to fully fulfil the task must be

then implemented in application code.

While it may be straight-forward to define compe-

tencies for the first three of these situations for a given

DB system, situation 4) needs specific consideration:

When using a database system for a new type of tasks,

the level of support for the developer can differ: from

full support – the task can be solved by DB queries only

– to almost no support – the task must be solved mostly

by application code with a workaround. The competen-

cies needed for this situation cannot be taught well in

the lecture but we rely on the exercises for that.

Formally, the module handbook at Bamberg Univer-

sity contains the course Advanced Data Management as

6 ECTS Master level course with lecture and exercises.

Along the same lines, at Frankfurt University the course

Advanced topics in the area of databases is offered.

2.2 Lecture

The main contents of the lecture were designed along

the lines of the book Advanced Database Management

[8], complemented by selected content from Designing

Data-Intensive Applications [6] and tutorials and pa-

pers [3,4]. For a Master level course, we assume solid

knowledge of traditional, relational database systems.

This also corresponds to the work or study situations in

which the students will apply their competencies later:

It can be assumed that colleagues and IT departments

have much more experiences and knowledge about rela-

tional DBS than about the NOSQL systems we teach.

The goal of the lecture is to present and discuss

the knowledge needed for the learning outcomes. This

knowledge is two-fold: (1) general implementation and

data modeling techniques of NOSQL DBSs, e. g., “data

partitioning” or “embedding vs. referencing”, and (2)

specific knowledge about DBSs, like query languages. In

theory, we could separate these two parts completely:

First, teach all the generic concepts, then the concrete

systems with references to the techniques they used.

Yet, the exercises are done in parallel to the lecture

such that we decided to integrate this content more

closely.

The general structure of the lecture is the following:

1. (1 lecture) Introduction and motivation: Introduce

learning outcomes and competencies, and define new

requirements for database systems that led to the

development of NOSQL systems.

2. (1 lecture) A short review of relational DBS: ER

modeling, relational model, SQL, normal forms, page



One DB Does Not Fit It All 3

buffers and indexing. We clearly state that we con-

sider this relevant pre-knowledge for the course and

only re-fresh it as a basis for further discussions.

3. (2 lectures) Distributed Data Management: Gen-

eral considerations and techniques, like partitioning,

replication and synchronization, consistency defini-

tions or consensus algorithms

4. (0,5 lecture) NOSQL decision tree: Based on [3];

provide mental framework so that students can clas-

sify the DB systems that are taught further on

5. (1-2 lectures each) NOSQL database systems: For

each system class, we cover data model (in contrast

to the relational model), query language, references

to implementation techniques (if applicable, from

distributed data management lecture); examples of

implementations that fall into the system class.

6. (1-2 lectures) Further models and outlook. Addi-

tional topics and systems that weren’t covered so

far, like Geo databases or time-series databases

In 2020, we covered the following NOSQL systems:

– Extensible Record Stores; e.g. Cassandra, Google

BigTable

– Document Databases, including XML databases;

e.g. MongoDB, XPath in Postgres

– Graph Databases; e.g. Neo4J, Apache Tinkerpop

– Key-value stores, Map and Reduce; e.g. Redis

2.3 Exercises

To achieve the learning outcomes, practical exercises

are essential. We had two types of assignments: (1)

Task solving with provided database systems, and (2)

Task solving on paper as a preparation for the (written)

exam. In this paper we focus to the first type of assign-

ments; a short description on the second type (and the

written exam) can be found in Section 2.4.

To teach the differences between the different NOSQL

systems, we decided to use the same use case and dataset

for all database systems, and the same set of tasks. This

was carefully designed so that for each database, some

tasks were solvable with a single query and clearly hit

the sweet spot of that system. At the same time, for

each database, some tasks were very hard or even un-

solvable without significant workarounds.

For solvable tasks, we expect queries as a result.

Yet, for unsolvable tasks, students need to write appli-

cation code. Only if it is required in the exercise sheet

to use a user-defined function for a task, we expect

the submission of application code; otherwise we ex-

pect descriptions on how application code could solve

the task not solvable by queries. These unsolvable tasks

are the key contribution of our teaching concept. They

correspond to the mentioned situation that a new task

should be solved with a given database system and it

is unknown whether the DBS is suited for this task or

not. Of course, we did not inform the student up-front

whether a task was solvable or not; however, we gave

a maximum time for each task (solvable or not) and

added the following information to the task sheet:

Please do not work longer than the specified time

on a task! If you think that you will not be able

to finish the task in the given maximum time,

stop working on it 15 minutes before the end,

and provide an explanation containing the fol-

lowing information: Whether you think that the

task is solvable with the current system at all,

and why? If you think that is solvable with more

time: which approach would you try out next?

2.4 Exam

It is always a challenge to map the targeted work or

study situations to exam tasks. For the given compe-

tencies, different exam types are possible; so far, we

did oral exams and written exams. Since some of the

competencies can be shown best in the exercises, we re-

warded the active participation with bonus points that

have an effect on the final grade.

In designing the exam tasks, we aim for providing

the context or situation in which the task should be

solved, e.g., by describing a certain situation with a

customer. It is particularly hard to test the competency

to write queries for a given database system, since this

often relies on several rounds of try and error, which

cannot be provided in a written exam. In addition, if

a solution is provided which is not correct, it is very

hard to judge how it corresponds to the general under-

standing of the student. Hence, for queries, we often

rely on the competence to spot errors or missing parts

in queries by providing partial or erroneous query code

that should be commented or completed.

Another important competency is the ability to find

out the criteria that are important for the customer.

This can be much better tested in an oral exam, where

the examiner can play the role of a non-expert who

just provides a starting problem, and the student being

the expert who will find the best solution by asking

questions and following up based on the given answers.

3 Use Case for Tasks

As a common dataset, we used a subset of the En-

ron corpus [7] (a large set of email messages). Figure 1

shows the data model that we provided to the students

with arrows denoting foreign key references.



4 Lena Wiese et al.

Department

ID:VARCHAR(10)

Name:VARCHAR(37)

Location:VARCHAR(55)

Person
ID:VARCHAR(20)

Firstname: VARCHAR(14)

Middlename: VARCHAR(18)

Lastname: VARCHAR(17)

WorksIn: VARCHAR(10)

Salary: INTEGER

Emailaddr: VARCHAR(34)

knows
PID1:VARCHAR(20)

PID1:VARCHAR(20)

Email
ID:VARCHAR(50)

MessageBody:VARCHAR(4153)

MessageDate:VARCHAR(29)

MessageFrom:VARCHAR(45)

MessageSubject:VARCHAR(100)

CC
ID:VARCHAR(50)

Email:VARCHAR(39)TO
ID:VARCHAR(50)

Email:VARCHAR(39)

Fig. 1 Common data model for exercises

Our set of tasks on these data was the following:

1. System preparation: This task is DBS specific. It de-

scribes how to set up the specific environment needed

to solve the tasks.

2. Equi Join: Three different tasks where data needed

to be combined based on equality of certain at-

tributes, like List of people with their department.

3. Theta Join: Combination of data based on a com-

parison that is not an equality, e.g. between salary

and the number of emails: Do people that earn more

than the average salary in their department write

more emails than those who don’t?

4. Schema Evolution: Add an attribute to a table, and

add information to an entity set with a default value.

5. Missing values: Find missing values for each attri-

bute of the e-mails. Which attribute has the most

missing values?

6. Network analysis: Investigating the social structure

of the Enron company based on the email corpus.

Each employee can be seen as a node in a network

where edges are represented by the emails sent from

one employee to another or by the “knows” rela-

tionship between two employees. The tasks here are

to find out network size by the knows relation, to

find out which people are in the 2-hop email net-

work, and to find out who sent emails to exact 7

TO-recipients (count outgoing edges).

7. User defined function: Creating a word count exam-

ple as a UDF and add it to the database.

Out of these tasks, some are straight-forward for a

relational database system (like the JOIN-operations

or the schema evolution), while the network analysis

would require many self-joins with an unknown number.

When designing these tasks, we had six DBS categories

in mind (Relational Databases, Extensible Record Sto-

res, Analytical Databases/Column Stores, Graph Data-

bases, Key-Value Stores, Document Databases). We cat-

egorized the tasks into three levels of difficulty (easy,

medium, hard). In addition, some tasks are solvable

and some tasks are unsolvable or too complex (which

we consider unsolvable). Based on these categories, a

task can be classified into six classes like: easy/solvable,

easy/non-solvable, and so on up to hard/non-solvable.

To assign the maximum time for each task we consid-

ered the level of difficulty and solvability of the tasks.

With some databases (in particular, Graph DB or

Document Databases) students need time to get fa-

miliar with the query language. Therefore, a medium

level of difficulty is considered for the first task. Yet,

in other databases (like Relational Databases) the first

task with an Equi-Join can be considered easy/solvable.

In a database in which the operator join is not sup-

ported (like Cassandra) it takes some time for the stu-

dents to realize this deficiency. Hence, the first task in

Cassandra is considered as hard/non-solvable. Subse-

quently, the next tasks that need a join are considered

as easy/non-solvable. Another example considered as a

hard/non-solvable task is Network Analysis in a Doc-

ument Database like MongoDB – although still some

clever students provided some ingenious solutions by

going over the data in the Enron dataset and gaining

insight into the network. In contrast, Network Analysis

is an easy/solvable task in a Graph Database.

4 System Environment

In order for us to provide a suitable environment for the

students to solve the assignments using the proposed

systems, we needed to answer the following questions:

– Where does the server run? (Cloud, On-premise ser-

ver, Virtual Environment on Client Computer)

– What client application will be used for running

queries? (Native Admin Interface or terminal with

text-only access)

– Where does the client run? (Within a browser or on

a client computer)

– What client computers are used? (Standardized, CIP

pool / Student’s Computers)

– How does the authentication work? (Accounts)

– How big is the dataset? How can it be inserted into

the DBS?

We offered the course at two different universities

and over the run of three years. This resulted in differ-

ent system environments that we set up for each edition

of the course. We discuss the setups in detail and pro-

vide a comparison matrix in Table 1.

Cloud Platform: In the first edition of the course in

2015 we cooperated with a company, who provided us

with access to their (back then) recently published cloud

platform in which the database systems were offered.

As academic institutions we were using a free plan. Yet

each individual student had to acquire an access key



One DB Does Not Fit It All 5

2 13

Fig. 2 The different environment setups for the hands-on exercises

that was valid only for a limited duration. In this plat-

form, all the server systems ran in the cloud as depicted

in Fig. 2 (1). The client application was a web interface

that could be used from anywhere (students’ own com-

puters or thin clients in CIP Pool). The students got a

free account for one month as a part of a trial plan with

a limit on the bandwidth, data storage and the number

of processors allocated for data processing.

This cloud solution neither requires database installa-

tion nor user management from our side; yet, we neither

had options for database configurations. As the system

was new back then, the web services for the database

systems all had a different look-and-feel, although the

platform had a common portal for login. We also ex-

perienced some system outages and connectivity issues

(delay in response, etc.). Before the students could start

using the systems, they had to import the data individ-

ually into the target database systems by uploading the

data files. The trial plan imposed also a limitation on

the data storage, which meant that only a part of the

data could be stored. This architecture is mostly suit-

able for tutorials over a short period of time (as long

as the trial plan), where the teaching goal is geared to-

wards introducing the systems and getting a first hands-

on experience. This form is unsuitable for usage periods

that span over the whole course period, a complex set

of task, and large data sets. A more mature cloud plat-

form and a paid usage plan however might lead to a

quite different teaching experience.

Virtual Environment: In a second edition of the course

we installed VirtualBox in a PC pool. We then cre-

ated images of virtual machines containing preconfig-

ured database system installations that the students

could load and then run on their PCs. In this setup –

depicted in Fig. 2 (2) – the server side of all the database

systems runs on the virtual machine, the client side of

each database systems is also used from within the vir-

tual machine. This setup offers more flexibility in the

systems configuration and removes the constraints of

connectivity and processing, since the students could

use their own computers (or CIP pool accounts) for the

tasks. This solution however assumes, that each student

has access to an appropriate computer, which could ex-

clude some students (who cannot afford computers – in

particular in full online editions as described in the up-

coming section). Yet, this solution guarantees that each

user’s data is completely shielded from other students.

However, when the data to be used is too large, the

image can become very big, which makes this solution

less attractive. We encourage the use of this solution for

tutorials that span a period of one semester or more,

where the number of the participants is small (less than

one hundred) and the data size is manageable (in the

area of hundreds of megabytes).

On-premise Centralized Database Server: In other edi-

tions at the University of Bamberg, we set up a virtual

machine on one of our servers – removing performance

bottlenecks of individual PCs. All the database systems

had their server sides installed on the virtual machine.

All the server sides were installed in a docker container

each for the convenience, isolation and ease of exposure

to the outside that containers offer. Use of the systems

follows one of the methods portrayed in Fig 2 (3):

1. Installation of a client application to establish a con-

nection with the servers

2. Access the system through an included administra-

tive web-based application

3. Direct access to the host container using SSH

While this solution enables the students to use all

systems without having a powerful machine, the admin-

istrators have to take care of the authentication of the

students (user creation and access management). It in-

curs more overhead for system preparation, but offers

the benefit of relieving the students from the chores of

system installation and data importing. This option is

advised for tutorials that last a semester or longer, for

large data processing tasks, and are destined for a very

large number of students.



6 Lena Wiese et al.

Con-
figu-
rability

Self-
con-
tained-
ness

Ease
of
use

Data
Vol-
ume

Cloud (free plan) (1) – – 0 0
Virtualized (2) + + 0 –
Centralized (3) + 0 + +

Table 1 Comparison of system environments

5 The Summer Term 2020 Course

In summer term 2020, the whole course concept was

turned into a full online course due to the Corona sit-

uation. In this section, we present how we conducted

the course in this special semester at the University of

Bamberg. The exam was done as a usual written exam.

5.1 Lecture

We pre-recorded videos on the lecture contents which

were between 10 minutes and 40 minutes long with a

clearly defined topic. To provide some structure, we

kept the original lecture times (weekly) and used that

data to live-stream the videos (called “watch party”)

with a parallel live chat (on-premise Rocket.Chat in-

stallation) for questions. Between two videos, there was

a short pause for Q+A in the chat. In the announced

Q+A chat meetings, the aim is to answer students’

questions in the chat quickly. Later on the same day, the

videos were available for asynchronous watching. The

live chat was available during the whole course so that

students could ask questions whenever they watched

videos. Besides, students could use the forum and email

asynchronously to contact supervisors. The last session

was done as a live event with no recording. Students

could either join the Q+A session at MS Teams with

their university account, or watch the live stream of this

session and ask questions over Rocket.Chat.

In contrast to a parallel Bachelor course, the in-

terest of attending the live streaming sessions dropped

significantly after some weeks from 80 attendees to 20

attendees, so that we changed that to video provision-

ing only after week 7. In addition to our own content,

we also included a public virtual guest lecture (over

YouTube) in the course, where we could invite students

from several courses and universities, which would not

have been possible in a physical setting.

5.2 Exercises

The main goal of online exercise slots was to help stu-

dents start working on the assignments. We introduced

each database and provided the database schema and

information for system preparation. An important step

is to provide a database schema for the students that

represents the structure of data in the database. In or-

der to make each database efficient and show the char-

acteristics of each database, we needed to design differ-

ent structures for different databases. For example, a

join operation is not supported in Cassandra and not

efficient in MongoDB. Yet, we can use data duplica-

tion to create an efficient and fast data access for both

Cassandra and MongoDB. To emphasize that, we de-

signed suitable keyspaces or collections considering the

tasks in the assignments. For the system preparation

in the first edition of the course, as mentioned before,

students just needed an access key for the IBM cloud

platform. In the exercise edition with our centralized

database server, a system preparation on the client side

was needed. The appropriate information regarding the

suitable client side preparation was provided by us. For

example, to execute queries against Postgres, students

had to install Pgadmin on their computers.

6 Evaluation

We present an evaluation of the exercises from the Sum-

mer term 2020 course (see Section 5). Students were

provided with evaluation forms that they had to fill in

for each database system. The evaluation was not only

for grading but also estimating our success in conduct-

ing the course.

Evaluation Setup. To evaluate the solutions of students

participating in the exercises, students were asked to

enter their executable queries, partial queries or de-

scriptions in a solution sheet. The evaluation and grad-

ing of the solution sheet was be done automatically. In

addition to the solution of tasks, students were asked

to enter more information for the evaluation: Students

were asked to record the actual amount of time that

he/she spent on each task, as well as a self-assessment

whether the solution was a correct one and what was

their perceived level of difficulty of the task. The eval-

uation forms were submitted as CSV or Excel files. We

set up a KNIME workflow that reads in the files, does

the appropriate data cleaning (like conversion of the du-

rations into minutes), calculates the intended statistics

forming the input for the presented PGFPlots.

Results. As a first indicator of the attractiveness of

the course we measured the overall participation in the

Summer 2020 course. It turned out that roughly 55% of

the students who participated at the beginning stayed

until the end of the course and submitted result sheets:



One DB Does Not Fit It All 7

In total, 120 students registered for the exam, 94 at-

tended the exam. 90 students participated in the prac-

tical exercises and gained at least some bonus points.

Yet we experienced the usual effect of decreasing par-

ticipation during the course with 87 submitted (and

evaluable) result sheets for Postgres, 56 for Cassandra

and 47 and 46 for MongoDB and Neo4J, respectively.

1.1 1.2 1.3 6.1 6.2

0

50

100

10 20 20

100

3030 30 30

120

30

P
o
st

g
re

s
(M

in
u

te
s)

Median

Max. Time

1.1 1.2 1.3 6.1 6.2

0

50

100

10
30

10
33

15

60

120

60 60

30

C
a
ss

a
n

d
ra

(M
in

u
te

s)

1.1 1.2 1.3 6.1 6.2

0

100

200

47 62
35

160

60

180 180

60

180

60

M
o
n

g
o
D

B
(M

in
u

te
s)

1.1 1.2 1.3 6.1 6.2

0

20

40

60

25 20 15

40
30

60

30 30

60

30

Task number

N
eo

4
J

(M
in

u
te

s)

Fig. 3 Working times (Median) for selected subtasks

Due to space limitations we cannot evaluate all tasks

here but focus on four exemplary subtasks as shown in

Table 2. First we considered the actual time students

spent on each task in comparison to the maximum time

allowed. Figure 3 shows the median of the working time

reported by the students. We can observe that students

mostly stayed well in the limits of the assigned time

and hence our judgement of the maximum time was

justified. Only in the network analysis Subtask 6.2 sev-

eral students tried to find a solution until the maximum

1.1 1.2 1.3 6.1 6.2
0

20

40

60

80

P
o
st

g
re

s

Difficulty

1.1 1.2 1.3 6.1 6.2
0

20

40

60

80

Correctness

1.1 1.2 1.3 6.1 6.2
0

20

40

C
a
ss

a
n

d
ra

1.1 1.2 1.3 6.1 6.2
0

20

40

1.1 1.2 1.3 6.1 6.2
0

20

40

M
o
n

g
o
D

B

1.1 1.2 1.3 6.1 6.2
0

20

40

1.1 1.2 1.3 6.1 6.2
0

20

40

N
eo

4
J

easy medium

hard not spec

1.1 1.2 1.3 6.1 6.2
0

20

40

correct incorrect

not spec

Fig. 4 Difficulty levels (left) and correctness (right) in total
number of submission for selected subtasks

time – notably, even for Neo4J for which we considered

network analysis an easy and solvable task.

Next we compare the self-assessment of the stu-

dents (in terms of level of difficulty and assumed cor-

rectness of the result) with our prior assumptions in

Figure 4. We can observe that for Subtask 1.1 our in-

tention coincides with the students assessment as most

students reported “easy” for Postgres/Cassandra while

most reported easy or medium for MongoDB/Neo4J

and nearly all students reported correct results (hence

showing solvability of the task). Regarding Subtask 1.2

opposed to our prior judgment several students reported

“medium” even on Postgres showing that our assump-

tion of a decent knowledge of SQL was not met by some

students. For Cassandra, Subtasks 1.2, 1.3, 6.1, and 6.2

are considered as hard due to absence of the join op-

erator. However, this reasoning is the same for all the

subtasks. Hence, once the student learns this in Subtask



8 Lena Wiese et al.

Subtask# Task Postgres Cassandra MongoDB Neo4j
1.1 Equi join easy/solvable easy/solvable medium/solvable medium/solvable
1.2 Equi join easy/solvable hard/not solvable medium/solvable easy/solvable
1.3 Equi join medium/solvable hard*/not solvable hard/solvable easy/solvable
6.1 Network analysis hard/not solvable hard*/not solvable hard/not solvable easy/solvable
6.2 Network analysis hard/not solvable hard*/not solvable hard/not solvable easy/solvable

Table 2 Subtasks selected for evaluation; *: easy to see unsolvability by analogy (absence of join in Cassandra)

1.2, the rest of the subtasks can be considered easy/not

solvable by analogy. A slight mismatch with our judg-

ment was also the case for Neo4J where several students

reported “medium” which shows that students needed

some more effort to get used to Cypher and Neo4J func-

tionality. In terms of solvability the results matched

our assumption: with a majority reporting “correct” for

Postgres, MongoDB and Neo4J (solvable) but a major-

ity reporting “incorrect” for Cassandra (not solvable).

Regarding the other subtasks for Postgres, Cassandra

and MongoDB the results mostly matched our expec-

tations – although some students reported correct re-

sults for MongoDB for Subtasks 6.1 and 6.2 (which we

considered unsolvable) which may be due to the fact

that students developed complex workarounds. Yet op-

posed to our expectation, for Neo4J where we consid-

ered the network analysis tasks as “easy”, we can ob-

serve a significant number of students reporting a level

of “medium” or even “hard” and – in particular for

Subtask 6.1. – many students reporting incorrect re-

sults. We aim to investigate whether these problems lie

in understanding the concepts of graph databases or in

a technical difficulty with Neo4J.

In future editions of the course, we will extend these

evaluations. We plan to find out more about the actual

prior knowledge of students in terms of SQL/Postgres
by asking students to provide a self-assessment before

and after the exercises with the SQL DBS. In the same

manner, we can assess the learning curve of students in

terms of NoSQL DBSs by asking for a self-assessment

before and after the exercises with the other databases.

This will also enable us to analyze an effect of a good

prior SQL knowledge on the learnability of NoSQL sys-

tems.

7 Conclusion

We presented the concept and evaluation of a compre-

hensive Master degree course that teaches the theoret-

ical differences between diverse data models and com-

pares database systems from different categories. We

received in general a very positive feedback from the

students welcoming the comprehensive overview over

DB solutions and the in-depth practical experience. We

aim to continue the evaluations over the upcoming edi-

tions of the course. We may even include other database

systems in our portfolio and obtain a comparison to the

previously used ones.

Acknowledgements This course was further supported by
Nasr Kasrin, Stefan Schwarz, Tim Waage, Ingmar Wiese, and
many student teaching assistants. We’d further like to thank
all students for their participation in the evaluation and their
valuable feedback.

References

1. Council of the European Union: Council Recommenda-
tion, of 22 May 2017, on the European Qualifications
Framework for Lifelong Learning and Repealing the Rec-
ommendation of the European Parliament and of the
Council of 23 April 2008 on the Establishment of the Eu-
ropean Qualifications Framework for Lifelong Learning.
Official Journal of the European Union pp. 15–28 (2017)

2. Fowler, B., Godin, J., Geddy, M.: Teaching Case: Introduc-
tion to NoSQL in a Traditional Database Course. Journal
of Information Systems Education 27(2), 99 (2016)

3. Gessert, F., Wingerath, W., Friedrich, S., Ritter, N.:
NoSQL database systems: a survey and decision guidance.
Computer Science - Research and Development 32(3-4),
353–365 (2017). DOI 10.1007/s00450-016-0334-3

4. Gessert, F., Wingerath, W., Ritter, N.: Scalable Data
Management: An In-Depth Tutorial on NoSQL Data
Stores. In: B. Mitschang, N. Ritter, H. Schwarz, M. Klet-
tke, A. Thor, O. Kopp, M. Wieland (eds.) Datenbanksys-
teme für Business, Technologie und Web (BTW 2017), 17.
Fachtagung des GI-Fachbereichs ,,Datenbanken und In-
formationssysteme” (DBIS), 6.-10. März 2017, Stuttgart,
Germany, Workshopband, LNI, vol. P-266, pp. 399–402.
GI (2017). URL https://dl.gi.de/20.500.12116/937

5. Kim, S.: Seamless Integration of NoSQL class into the
Database Curriculum. In: M.N. Giannakos, G. Sindre,
A. Luxton-Reilly, M. Divitini (eds.) Proceedings of the
2020 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2020, Trondheim,
Norway, June 15-19, 2020, pp. 314–320. ACM (2020). DOI
10.1145/3341525.3387399

6. Kleppmann, M.: Designing Data-Intensive Applications:
The Big Ideas Behind Reliable, Scalable, and Maintainable
Systems. O’Reilly (2016)

7. Klimt, B., Yang, Y.: Introducing the Enron Corpus. In:
CEAS 2004 - First Conference on Email and Anti-Spam,
July 30-31, 2004, Mountain View, California, USA (2004).
URL http://www.ceas.cc/papers-2004/168.pdf

8. Wiese, L.: Advanced Data Management, For SQL, NoSQL,
Cloud and Distributed Databases. De Gruyter, Berlin,
Boston (2015)


