
SoftwareQuality Assessment of a Web Application for
Biomedical Data Analysis

Kristina Lietz
Bioinformatics Group
Fraunhofer ITEM

Hannover, Germany
kristina.lietz@item.fraunhofer.de

Ingmar Wiese
Bioinformatics Group
Fraunhofer ITEM

Hannover, Germany
ingmar.wiese@item.fraunhofer.de

Lena Wiese∗
Bioinformatics Group
Fraunhofer ITEM

Hannover, Germany
lena.wiese@item.fraunhofer.de

ABSTRACT
Data Science as a multidisciplinary discipline has seen a massive
transformation in the direction of operationalisation of analysis
workflows. Yet it can be observed that such a workflow consists
of potentially many diverse components: like modules in different
programming languages, database backends, or web frontends. In
order to achieve high efficiency and reproducibility of the analysis,
a sufficiently high level of software engineering for the different
components as well as an overall software architecture that inte-
grates and automates the different components is needed. For the
use case of gene expression analysis, from a software quality point
of view we analyze a newly developed web application that allows
user-friendly access to the underlying workflow.

CCS CONCEPTS
• Software and its engineering→Requirements analysis;Main-
taining software; •Applied computing→Computational tran-
scriptomics; Bioinformatics;

KEYWORDS
Data Science workflow, Gene expression analysis, Software quality,
Web service
ACM Reference Format:
Kristina Lietz, Ingmar Wiese, and Lena Wiese. 2021. Software Quality As-
sessment of a Web Application for Biomedical Data Analysis. In 25th In-
ternational Database Engineering & Applications Symposium (IDEAS 2021),
July 14–16, 2021, Montreal, QC, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3472163.3472172

1 INTRODUCTION
Data has evolved to become one of the most important assets for
any business or institution in recent years and constitutes one of
the key factors driving current innovations. For example, the steep
spike in technologies for personalized medicine enabled by wide
applications of genome or transcriptome analysis are facilitated
∗Also with Institute of Computer Science, Goethe University Frankfurt.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8991-4/21/07.
https://doi.org/10.1145/3472163.3472172

by a constant collection of (big) data. Workflows in a Data Science
context refer to the processing of data from its raw form to the
finished interpretation and result visualization. Such a workflow
includes steps such as cleaning, feature engineering, model genera-
tion, and validation. In order to fully operationalize the workflow,
this process may also include the deployment of the workflow in
an interactive webservice.

As a typical use case for an analysis workflow we address gene
expression analysis. Gene expression analyses are important in
areas such as drug development and tumor research. The chal-
lenge of analyzing genome and transcriptome data volumes has
become increasingly important in recent years and cover aspects
of exploratory data analysis, statistics and machine learning. Since
scientists performing gene expression experiments usually lack sta-
tistical and computer science knowledge to handle those amounts
of data, usable interfaces are needed. To enable an easy analysis of
the data, we designed and implemented a web service that abstracts
from the mathematical details and any programming tasks. The web
interface was implemented using the R Shiny framework which
was chosen because R libraries are widely used for gene expres-
sion analysis. Yet so far the R Shiny framework itself has not been
thoroughly evaluated regarding its capability for implementing
complex data science applications.

As the main goal of this article we provide an evaluation of our
web application in terms of software quality. More precisely, our
focus lies on comparing the maintainability of modularized versus
non-modularized Shiny applications as exemplified by our gene
expression web application.

A minor secondary goal of the article is to cover the combina-
tion of aspects with respect to workflows and DevOps by briefly
describing an implementation of an IT system infrastructure that
serves as our basis for a flexible deployment of the data analysis
workflows and web applications. We believe that a consideration
of DevOps paradigms can simplify development and operations of
typical Data Science workflows and enables a high quality in terms
of reproducibility, reusability and automation be achieved with low
maintenance effort.

Outline. The paper is structured as follows. Section 2 describes
the gene expression analysis workflow as a use case. Section 3 in-
troduces the topic of software quality. Section 4 summarizes our
requirements analysis and presents related work. Section 5 dis-
cusses our approach towards modularity of our application. Section
6 presents general design principles and analyzes their analogies
in Shiny. Section 7 gives an in-depth analysis of our application
based on quality metrics. Last but not least, Section 8 touches upon

https://doi.org/10.1145/3472163.3472172
https://doi.org/10.1145/3472163.3472172

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Kristina Lietz, Ingmar Wiese, and Lena Wiese

aspects of a real-world deployment before concluding the article in
Section 9.

2 USE CASE: GENE EXPRESSION ANALYSIS
Gene expression is defined as the process of using the sequence of
nucleotides of a gene to synthesize a ribonucleic acid (RNA) mole-
cule, which in turn triggers the synthesis of a protein or performs
some other biological function in a cell. As a result of this process,
the nucleotides’ sequence determines the biological information of
a gene [6].

2.1 Data Format
We focus on development of a web service to analyze gene expres-
sion data generated with Affymetrix microarray chips. Microarrays
are a collection of genes or cDNAs arranged on a glass or silicon
chip [4]. DNA molecules are located on spots or features on the
microarray chips’ silicon surface. On each feature are a few million
copies of the same section of a DNA molecule. This section can be
associated with a specific gene and is in Affymetrix chips composed
of 25 nucleotides. cDNA molecules get labeled with a fluorescent
dye and form the target molecule of the experiment. Finally, the
intensity of the fluorescence of the individual spots is measured
using special lasers. The more the oligonucleotides in the spots are
hybridized, the stronger the emission of light will be. An image is
generated from the intensity of the individual spot’s fluorescence
and stored for further analysis. The generated image is kept in the
data (DAT) file format, which contains the measured pixel intensi-
ties as unsigned integers. A so-called CEL file summarizes the DAT
file and is used in the further analysis.

Beyond the measurement data, additional metadata annotations
have to be stored. TheMicroArray Gene Expression Tabular (MAGE-
TAB) specification is a standard format for annotating microarray
data, which meets MIAME requirements. MIAME is a recommen-
dation of the Microarray Gene Expression Database society. It is
a list of information that should be provided at a minimum when
microarray is published to allow description and reproduction [5].
MAGE-TAB defines four different file types: Investigation Descrip-
tion Format; Array Design Format; Sample and Data Relationship
Format (SDRF); raw and processed data files. For the subsequent
analysis, the SDRF file is of particular importance because informa-
tion about the relationships between the samples, arrays (as CEL
files), and data of the experiment is contained.

2.2 Workflow
The data analysis for a gene expression experiment is usually con-
ducted by following a specific workflow. After performing a gene
expression experiment, first of all the quality of the resulting data
must be verified using different metrics. If the quality is insufficient,
some data may need to be removed from the analysis or parts of
the experiment may need to be repeated [13]. If the quality of the
data is sufficient, the data needs to be preprocessed. This process
consists of three steps: Background correction to remove influences
on the data that have no biological cause; normalization to make
individual samples comparable; and summarization to calculate one
value from multiple measured values of the activity of the same

Data
upload

Prepro-
cessing

DEG
analysis

DEG
comparison

GO
analysis

Figure 1: Workflow for analyzing differentially expressed
genes (DEGs)

gene [13]. Finally, the actual statistical data analysis is performed
to answer the research question [15].

We present now the workflow from the user’s point of view by
detailing all steps followed by a user in our web application. These
steps are initially derived from the MaEndToEnd workflow [17], yet
several customizations had to be added as requested by the endusers
of our web service. In Figure 1, the basic steps are visualized: Data
upload, preprocessing, DEG analysis, DEG comparison and gene
ontology (GO) analysis.

(1) The workflow starts with the upload of the raw input files.
For this, the user has to define the source of the files, cur-
rently either the local file system, a SQL database connection
or the GEO repository [10] are available as options. It is pos-
sible to filter the samples from the input data since not all
samples may be of interest.

(2) As the first step of the preprocessing, the uploaded files
can be filtered for their so-called gene chip types. An all-in-
one pre-processing algorithm can be selected by the user,
which is then applied to the data. It performs the steps of
background correction, normalization, and summarization.
Afterwards, the user can plot the data in various ways for
quality control.

(3) Next follows the actual gene expression analyses. A his-
togram of the distribution of the p-values is plotted for each
analysis, where it is expected that the frequency ranges be-
tween very high near 0 and low towards 1. The user verifies
this. If the histogram does not meet the expectations, the
workflow ends at this point. Possible faults could be incor-
rect data, incorrect pre-processing or improperly defined
analyses. If the histogram meets the expectations, the next
step is to set the significance thresholds. These define ranges
of statistical values calculated during the analysis in order
to identify differentially expressed genes (DEGs).

(4) In the next step of the workflow, it is possible to compare
the performed gene analyses with each other. For the com-
parison, different plots and Venn diagrams should be created
automatically.

(5) For classifying the identified differentially expressed genes
(DEGs) in the biological context, gene ontology (GO) [7]
based enrichment analyses are performed in our web ser-
vice. This offers a uniform vocabulary, which applies to all
eukaryotes.

Our web application offers a separate pane for each of the above
workflow steps.

3 SOFTWARE QUALITY
As already described, the importance of data analysis applications is
increasing. Whether a framework is suitable for the development of

SoftwareQuality Assessment of a Web Application for Biomedical Data Analysis IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

complex applications depends on many factors. We aim to analyse
our web service according to standardized software quality metrics.
The term software quality is defined by the International Organiza-
tion for Standardization/International Electrotechnical Commission
(ISO/IEC) as the “degree to which a software product satisfies stated
and implied needs when used under specified conditions” [16]; see
also [12] for a recent survey. The ISO/IEC 25000 norm represents
an international standard entitled “Systems and software engineer-
ing – Systems and software Quality Requirements and Evaluation
(SQuaRE)” including a section on System and software quality mod-
els. A distinction is made between the following quality models:
Quality in Use and Product Quality. We will focus here on Product
Quality that is defined as “characteristics [. . .] that relate to static
properties of software and dynamic properties of the computer
system” [16].

We now introduce a selection of these characteristics that we
later consider in the assessment of our software.

(1) Functional suitability consists of the sub characteristics func-
tional completeness, appropriateness, and correctness. It
addresses the effectiveness of the software product and is
assessed for our software by a comprehensive requirements
analysis and subsequent evaluation in user tests.

(2) Usability includes appropriateness recognizability, learnabil-
ity, operability, user error protection, UI aesthetics, and acces-
sibility. Thereof, appropriateness recognizability is defined
as “the degree to which users can recognize whether a prod-
uct or system is appropriate for their needs”. Usability of
our software is also evaluated in user tests and feedback
interviews.

(3) Maintainability is defined as “the degree of effectiveness and
efficiency with which a product or system can be modified
by the intended maintainers”. It includes the sub characteris-
tics modularity, reusability, analyzability, modifiability, and
testability. The sub characterizations are explained further
because they are considered in more detail to evaluate our
Shiny framework later on with quantitative metrics.

(a) Modularity describes the separation of the software into
components, where changes in a component should affect
dependent components as little as possible.

(b) Reusability means the use of assets in several software
systems or with building new assets. Assets are defined as
“work products such as requirements documents, source
code modules, measurement definitions, etc.” [16].

(c) The sub characteristic analyzability describes the under-
standing of the interrelations in the software product, for
example, the impact a change would have.

(d) Modifiability describes the extent to which software can be
changed without degrading quality or introducing errors.
According to ISO/IEC, the modifiability can be impacted
by modularity and analyzability.

(e) Finally, testability describes the possibilities of setting up
test criteria and verifying their compliance.

(4) Compatibility (within the characteristic co-existence) de-
scribes the impact on other software running on the same
platform as well as (within the characteristic interoperabil-
ity) the exchange of information with other software. These

aspects are considered in our software since input and out-
put file formats are supposed to be interchangeable with
other software products by using standardized data formats,
allowing access to public repositories (like Gene Expression
Omnibus) as well as offering a versatile database system
access.

We mention in passing that the Product Quality model [16]
also covers other characteristics which are however out of the
scope of this paper. The characteristics of performance efficiency
describes the properties time behavior, resource utilization and ca-
pacity and depends on the used platform or environment. Reliability
describes the maturity, availability, fault tolerance and recoverabil-
ity of the software. Security includes the confidentiality, integrity,
non-repudiation, accountability and authenticity of the software,
which will not be considered in this article since the application is
only accessible to researchers inside the institute. Finally, portabil-
ity includes the adaptability, installability and replaceability of the
product; while not quantitatively analyzing portability, we address
this issue in Section 8.

4 REQUIREMENTS ANALYSIS AND
COMPARISON TO RELATEDWORK

For the implementation of the web service, the software require-
ments have to be specified first. During the complete development
process, new requirements were identified, resulting from litera-
ture search and interviews with future users of the web service. As
already mentioned, various requirements were derived from the
MaEndToEnd workflow. Requirements were identified and docu-
mented during the entire development process.

A distinction between functional and non-functional require-
ments is made. Examples of non-functional requirements are the
system’s availability or safety aspects. The requirements are graded
into high, medium and low concerning their relevance for imple-
mentation [24]. We identified 30 functional requirements and 4
non-functional requirements (which cannot be fully reproduced
here in detail due to space restrictions); out of the functional re-
quirements 13 and out of the non-functional requirements 2 were
graded as high.

Because of the relevance of gene expression analyses, many tools
for those are already available. For justifying the development of a
new tool, the following paragraphs will give a short presentation
of a selection of existing tools and show the differences between
the defined requirements and the functionalities of these tools. The
Transcriptome Analysis Console (TAC) software [1] is presented
because Fraunhofer ITEM researchers currently use it for gene
expression analyses. The other presented tools were selected based
on a literature search; two of them were chosen because their func-
tionalities and the defined requirements intersected as closely as
possible: GEO2R [20] and Network-Analyst [25]. In particular, only
tools that are open source and offer a graphical UI were selected.

The TAC software [1] is provided by Affymetrix Inc., the manu-
facturing company of the microarray chips. The gene expression
analyses are mostly performed with the R packages provided by
Bioconductor [14]. According to our requirements analysis we iden-
tified the following shortcomings of the software: Uploading or
creating SDRF files is not possible, but definable attributes provide

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Kristina Lietz, Ingmar Wiese, and Lena Wiese

the functionality. Furthermore, it is possible to compare several
analyses, but not to the required extent. An installation of the TAC
software on the client is mandatory. The significance values cannot
be set individually for the single DEG analyses. Also, performed
analysis steps can only be traced by manually repeating the steps.

GEO2R offers an option for gene expression analysis available
on the website of the GEO database [10]. According to our require-
ments analysis we identified the following shortcomings of the
software: Local files and SDRF files cannot be uploaded. Further-
more, only one biological group per sample can be specified, which
limits the possible analyses. GEO2R does not offer the ability to
generate PCA plots and heat maps or filter the samples after qual-
ity control. Multiple DEG analyses can only be defined indirectly
because all defined biological groups are automatically compared.
For these, only similar significance thresholds can be defined. A
comparison of several analyses is only offered for analyses made
between samples of the same series and only via one Venn diagram.

NetworkAnalyst [25] is a free web-based tool for gene expression
analysis that offers DEG analyses and network analyses. According
to our requirements analysis we identified the following shortcom-
ings of the software: Files in CEL format, as well as SDRF files,
cannot be uploaded. However, the functionality of defining biolog-
ical groups can be achieved by specifying the factors elsewhere.
For preprocessing, the tool only applies the filtering of genes and
the normalization step. Background correction, as well as summa-
rization, does not seem to be performed. Moreover, the filtering of
samples after quality control is not possible. Multiple DEG analyses
can be defined, but not as precisely as required and individual sig-
nificance thresholds can only be defined for the adjusted p-value.
Several analyses can be compared, but not to the requested level.

Overall, no tool completelymeets the requirements graded “high”.
Especially the comparison of analyses is only possible to a limited
extent. The development of an own application for gene expression
analysis within our institute offers further advantages. Data that
has not yet been published can be analyzed without any concerns
about data protection. In contrast, the security of third-party tools,
especially if they are publicly available on the internet, has to be
verified first. Moreover, if new requirements arise, the software can
be flexibly extended.

5 SHINY MODULARIZATION
The programming language R provides an environment for the
analysis and graphical visualization of data [22]. R was chosen
for our implementation because the open-source software project
Bioconductor provides many R packages for the analysis of gene
expression data. Although these could also be used in other pro-
gramming languages, the application’s complexity can be reduced
by limiting it to one programming language. This has a positive
impact on the maintainability of the software. With R Shiny, a
framework for the development of web-based applications directly
in R is provided. An application is built from two main components:
A UI object and a corresponding server function, which accesses
the UI elements via their defined IDs. Also, the server function
defines the logic for the functionality of the web app, for example,
processing the data or plot variables. The elements defined in the
UI object are either input or output elements. Values of the input

elements are processed in the server function code, while the output
elements visualize the results of those calculations. Moreover, Shiny
uses a reactive programming model. Reactivity in Shiny means that
when the input values are changed, the code sections that access
the changed input elements are automatically re-executed. Thus,
the corresponding output elements are also automatically updated.

As mentioned in Section 4, for the implementation of our web
service, we first specified software requirements by close commu-
nication with the end users. During the complete development pro-
cess, new requirements were identified, described, and evaluated.
The process was thus iterative. A first prototype of our framework
hence resulted in a monolithic source code.

Defining modules should improve the handling of complex Shiny
applications. For this purpose, functions are used, which are the
fundamental unit for abstraction in R. Modules consist of functions
that generate UI elements and functions used in the module’s server
function. There is a global namespace within a Shiny application,
so each ID of input or output elements must be unique within the
app. By using functions for generating UI elements, the uniqueness
of the IDs must be ensured. Shiny modules solve this problem by
creating an abstraction level beyond functions.

Shiny modules have three basic characteristics:

(1) They cannot be executed alone but are always part of a larger
application or module. The nesting of modules is therefore
possible.

(2) They can represent input, output or both.
(3) They are reusable: both in several applications and several

times in the same application.

For creating a module, one function is needed that defines UI ele-
ments and one function that uses these elements and contains the
server logic. The UI function expects an ID as a parameter, which
defines the namespace of the module. The caller of the function
defines this. The namespace is applied to all IDs of the input and
output elements for ensuring the correct mapping of the elements
to the namespace. This ID as namespace must also be passed to the
server function of the module. In this, the moduleServer function
is invoked, where the actual server logic is defined. The objects
input and output are aware of the namespace, so the elements with
ID wrapped in the defined namespace can be referenced using the
standard way input$elementID. UI elements outside the namespace
cannot be addressed at all. In the regular components of the Shiny
application, the UI function of the module is called in the UI object
and the server function of the module in the regular server function.
It is essential to pass the same ID to the corresponding functions.

In order to improve maintainability, we refactored the monolithic
version of our app into a modularized one. Figure 2 illustrates an
overview of the defined main modules and their sub modules of
the web application. One module was defined for each main step of
the workflow, resulting in the following main modules: dataUpload,
preprocessing, degAnalysis, degComparison, and goAnalysis. Each
of these main modules are realized within a separate tab/panel in
the web application. Each of the main modules accesses at least one
sub-module with more specific responsibilities.

SoftwareQuality Assessment of a Web Application for Biomedical Data Analysis IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

Figure 2: Modularized application

maintai-
nability

sub characteristics
modu-
larity

reusa-
bility

analys-
ability

modifi-
ability

encapsulation ↑ ↑ ↑ ↑
coupling ↓ ↓ ↓ ↓ ↓
cohesion ↑ ↑ ↑ ↑ ↑
size ↓ ↓ ↓
complexity ↓ ↓ ↓ ↓

Table 1: Influence of OO design principles on the sub char-
acteristics of the software quality property maintainability;
an arrow pointing up (↑) indicates a positive influence of the
design property on the quality (sub) characteristic and an ar-
row pointing down (↓) indicates a negative influence.

6 SOFTWARE DESIGN PRINCIPLES
This article focuses on the evaluation of the maintainability of
Shiny applications. The focus is on the maintainability of the Shiny
components that build and control the user interface (UI). As al-
ready specified, maintainability consists of the sub characteristics
modularity, reusability, analyzability, modifiability, and testability.
The latter is not considered in this evaluation of Shiny, as this is
a very extensive topic and would exceed the scope of this paper.
In the following, a relationship between these sub-characteristics
and design principles from the object-oriented (OO) programming
paradigm is first established. In this section, the term application
refers to a Shiny web app and the term module refers to a Shiny
module.

6.1 Influence of OO design principles on
maintainability

When designingOO software products, several design principles are
defined, supporting the enhancement of the software quality. In the
following, a selection of the design principles defined by Schatten
et al. [21] is presented and assumptions about their influence on the
sub characteristics of maintainability are made. Only the principles
relevant to the metrics calculation in Section 7 are considered. The
assumptions about the impact on maintainability are based on the
results of a literature review and the comparison of the definitions of
the design principles to those of the maintainability characteristics.

Table 1 indicateswith upward and downward arrows an overview
of our assumptions made for the influence of the design principles

on the software quality; that is, ideally higher encapsulation, looser
coupling, higher cohesion, and less extensive and less complex soft-
ware. We discuss our assumptions on software design principles in
detail:

Encapsulation. With encapsulation, details of the implementa-
tion should be hidden from the outside, realized in the OO paradigm
by private fields and methods. Communication between compo-
nents should occur only via defined interfaces, which are public
fields and methods. For example, this enables to change the en-
capsulated functionality of a component, without affecting the of
calling components as long as the interface remains unchanged.
The definition’s similarity of the sub characteristic modularity of
maintainability is noticeable [16]. Therefore, the assumption is
made here that higher encapsulation also increases modularity,
reusability, modifiability, and maintainability overall.

Coupling. Coupling describes the dependency of two compo-
nents, whereby in general, the lowest possible coupling should be
achieved. Thus, the effects of changes of a component are reduced
in the dependent components [21]. Also, tight coupling compli-
cates the analyzability of the software. Therefore, with increasing
coupling, the maintainability of the software decreases.

Cohesion. Cohesion describes the degree to which the elements
of a component are interrelated. As cohesion increases, the cou-
pling between the individual components usually decreases [21].
Therefore, rising cohesion generally supports the maintainability
of the product.

Size and Complexity. In the following, also metrics are consid-
ered, which are assigned to the design properties size and complex-
ity. The assumption is made that with increasing size, especially
the software’s analysability and modifiability deteriorates while
increasing complexity also impairs reusability.

6.2 Transfer of OO concepts to Shiny
Our aim is to analyze our Shiny app according to widely used OO
software quality metrics [18]. Because in general the application
modules in Shiny do not fully follow the the OO paradigm, some
assumptions have to be made to calculate the metrics. For this
purpose, a definition of the fields and methods of different encapsu-
lation levels is made for the Shiny framework. Only the elements
of a class that are relevant in the metric selection of Terragni et al.
[23] are considered. Hence, for transferring the class elements of
the OO paradigm to the Shiny framework in a meaningful way, the
class elements, their functionality and possible encapsulation levels
are presented next.

An object or instance has a defined state (defined by attributes
or fields) and a defined behavior (defined by methods). In general,
the behavior depends on the state, which means that the meth-
ods access the attributes. A class defines for a collection of objects
the structure, the behavior and the relationship to other classes.
Static elements of a class are the same for all instances of that
class. Static methods can only be applied to the whole class and not
to a single instance. Usually, they are used to assign a new value
to class attributes without the influence of an instance or when-
ever an operation applies to all or several instances. The following

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Kristina Lietz, Ingmar Wiese, and Lena Wiese

OO paradigm Shiny framework
Fields

Static fields Fields with equal value for all instances;
lockBinding in the environment

Private fields Reactive Values (including Input object)
defined inside application or module

Protected fields -

Public fields Fields declared in the R script outside of
functions; not locked in the environment

Methods
Static methods -

Private methods
Functions defined inside server function
Reactive expressions
Observers (including render functions)

Protected methods -

Public methods

Functions defined in the R script outside
of the server function
If application viewed: only server function
If module viewed: UI and server function

Table 2: Mapping of OO class components to Shiny applica-
tions and modules

three levels of encapsulation are differentiated: private elements
are accessible only within the class itself; protected elements are
accessible in the class itself, in its subclasses and, depending on the
programming language, in classes within the same package; public
elements are accessible by all classes. The following statements
can be made by transferring these definitions to the Shiny frame-
work. Instances of a Shiny application or module are distinguished
from each other by using different namespaces. An instance of an
application or module also consists of a state and behavior. The
state is primarily defined by input elements used by the defined
behavior to calculate the output elements. The definition of the
application or module determines the state and the behavior for a
collection of instances. Static fields should have the same value for
all instances of an application or module. Static functions should
be applicable to all instances. The latter is not implementable for
Shiny applications and modules because the principle of object
management is not realized by default. However, the object man-
agement could be achieved using static attributes, but this was not
implemented in the exemplary software, so that static methods in
the Shiny framework will not be considered in further discussion.
The distinction of instances based on the namespace allows two
stages of encapsulation to be defined: Private elements are only
accessible within their own namespace, and public elements are
also accessible outside the namespace. The encapsulation level pro-
tected of the OO paradigm has no correspondence in Shiny since
inheritance is not implementable in this framework.

We now discuss how the individual elements from the OO para-
digm are mapped to elements of applications and modules of the
Shiny framework base on these assumptions; an overview of this
mapping is provided in Table 2.

It is assumed that private fields correspond to reactive values
defined within the application or module in the Shiny framework.
Reactive values are used in the defined behavior of the application

or module to generate the output. Moreover, they are not accessible
outside the namespace of the application or module. Fields that are
defined outside of a function in the script of an application or mod-
ule and are not locked in the global environment are seen as public
fields. These elements can also be addressed outside the namespace
itself. They might also be assumed as static, but any instance can
change the value of the field. This may not affect all other instances
of this application or module that already exist, especially in other
sessions. Therefore, only fields with the same value for all instances
and are locked in the environment via the lockBinding function
are assumed to be static fields. A field has the same value for all
instances if the value does not depend on any reactive values or
method parameters of the functions. Locking the field prevents the
assignment of a new value. Thus, the definition of static variables
in the Shiny framework is stricter than in the OO paradigm, but
otherwise, the equality of the field’s value for all instances cannot
be ensured. Private functions in the Shiny framework correspond
to functions defined within the server function of an application
or module, reactive expressions and observers, including render
functions. These functions define the behavior of the application
or the module by calculating the output in dependency of the state
of an instance. Functions defined in the server function are not
accessible outside of the namespace of the application or module.
Observer and render functions can only be defined inside other
functions, so they are automatically not callable from the outside.
Also, they are not explicitly invoked in the program code anyways
but are executed based on reactivity. Finally, public functions are
functions defined in the R script outside of any other functions. For
Shiny applications, this does not include the server function since
this cannot be called outside the application in any meaningful
way, except to create a new instance. For Shiny modules, the UI
and server functions are also included as they provide the module’s
interface and are thus called by other modules or applications.

7 SOFTWARE QUALITY ANALYSIS
This section examines how the software quality characteristic main-
tainability, which was defined in Section 3, is affected by the mod-
ularization of Shiny applications by comparing modularized and
non-modularized version of our application. With the help of the
calculation of software quality metrics, the effect of the modulariza-
tion of Shiny Apps on maintainability is considered quantitatively.
These metrics are mostly derived from the OO paradigm, so they
must be partially adapted to the Shiny paradigms. As such, a formal
evaluation of the use of the Shiny framework for the development
of larger, more complexly structured applications is made. We rely
here only on very specific metrics for a static code analysis – which
is an established method [9, 11, 23] – due to the fact that we com-
pare two versions of our application with a fixed feature scope. An
advanced assessment could also use a cost model based on change
rate of the code; in [2] the authors argue that this cost model enables
the prediction of future development costs.

7.1 Metrics calculation
Based on the correspondences between Shiny and the OO para-
digm just discussed, the effect of modularizing Shiny applications

SoftwareQuality Assessment of a Web Application for Biomedical Data Analysis IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

(see Section 5) is examined. For this purpose, the presented ap-
plication for gene expression analysis was implemented from an
earlier development state both with modularization and without
(monolithic). Any comments or other code documentation were
removed in the source codes of both applications to increase their
comparability; this is based on the assumption that differences in
comments do not influence maintainability. Since both applications
represent the same functionality, the actual calculation logic was
abstracted into functions called by both applications. In the fol-
lowing, these methods are referred to as functionality methods
or functions. Thus, the source code to be compared contains as
far as possible only instructions concerning the UI as well as its
control. For the quantitative comparison, metrics were calculated,
which were mostly originally developed to evaluate classes of OO
programming languages [23]. First, it will be discussed which of the
metrics will not be calculated. The number of bytecode instructions
(NBI) was used in [23] because applications developed in Java were
considered. Compiling R program code into bytecode is possible,
but an interpreter is used by default. Therefore, this metric is not
calculated. We compare both our applications (monolithic versus
modularized) without considering the code documentation, thus it
would not be useful to calculate the lines of comment (LOCCOM)
metric. The number of static methods (NSTAM) cannot be calcu-
lated since it is not possible or reasonable to declare a method of an
application or a module as static in Shiny. Moreover, the concept of
inheritance is not implementable in Shiny applications or modules,
so any metrics that are based on inheritance cannot be calculated.
This includes the depth of inheritance tree (DIT), the number of
children (NOC), the measure of functional abstraction (MFA), the
inheritance coupling (IC) and the coupling between methods (CBM).
There is no equivalent in the Shiny framework to the encapsula-
tion level protected used in the OO paradigm, as explained earlier.
Therefore, the number of protected methods (NPROM) cannot be
calculated.

Next, the metrics that were calculated for the sample applications
are presented. The details of how they were calculated will also be
discussed. Table 3 provides an overview of the calculated metrics
and a brief description.

The lines of codes (LOC) metric counts the number of non-blank
lines of the application or the module. The IntelliJ Plugin Metric-
sReloaded was used for the calculation of the LOC. This metric
is used to evaluate the design property size and, therefore, has a
low value. This applies to all metrics of this design property. The
number of public methods (NPM), the number of fields (NOF) and
the number of static fields (NSTAF) were calculated by counting
the number of corresponding elements in the application or the
module. Terragni et al. do not define which encapsulation should
be considered for the calculation of the NOF. It is assumed that only
public fields are counted since a separate metric exists for private
fields. The number of method calls (NMC) is the sum of the number
of method calls internal (NMCI) and the number of method calls
external (NMCE). Thereby, the NMCI was calculated by counting
all invocations of a function defined in the application or module
itself. The NMCE is the number of all function invocations defined
in another module or an external R package. Also, the calling of
functionality methods is included in this metric.

Design Property Name Description

Si
ze

Lines of Code (LOC) Number of non-blank lines
Number of Public Meth-
ods (NPM)

Number of public functions in
an application or module

Number of Fields (NOF) Number of public fields in an
application or module

Number of Static Fields
(NSTAF)

Number of static fields in an ap-
plication or module

Number of Method
Calls (NMC)

Number of function invocations

Number of Method
Calls Internal (NMCI)

Number of function invocations
of function defined in the appli-
cation or module

Number of Method
Calls External (NMCE)

Number of function invocations
of function defined in other
modules or packages

Co
m
pl
ex
ity Weighted Methods per

Class (WMC)
Sum of the Cyclomatic Com-
plexity of all function in the ap-
plication or module

Average Method Com-
plexity (AMC)

Average of the Cyclomatic Com-
plexity of all function in the ap-
plication or module

Response For a Class
(RFC)

Number of functions that re-
sponse to a message from the
application or module itself

Co
up

lin
g Coupling Between Ob-

ject classes (CBO)
Number of other modules or
packages that an application or
module is coupled to

Afferent Coupling (Ca) Measure of how many other ap-
plications or modules use the
specific application or module

Efferent Coupling (Ce) Measure of how many other
modules or packages are used
by the specific application or
module

Co
he
si
on Lack of Cohesion in

Methods (LCOM)
Difference between the number
of function pairs without and
with common non-static fields

Lack of Cohesion Of
Methods (LCOM3)

Revised version of LCOM

Cohesion Among Meth-
ods in class (CAM)

Represents the relatedness
among functions of an applica-
tion or module

En
ca
ps
ul
at
io
n Data Access Metrics

(DAM)
Ratio of the number of private
fields to the total number of
fields

Number of Private
Fields (NPRIF)

Number of private fields of an
application or module

Number of Private
Methods (NPRIM)

Number of private functions of
an application or module

Table 3: Descriptions of the calculated (class) metrics [23]

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Kristina Lietz, Ingmar Wiese, and Lena Wiese

Next, metrics for quantitative assessment of the design property
complexity are presented. For all metrics, a low value corresponds
to low complexity. The weighted methods per class (WMC) is cal-
culated by the summation of the Cyclomatic Complexity [19] of
all functions defined in the application or module, which counts
the linear-independent paths within a program. The R package
cyclocomp was used to calculate the Cyclomatic Complexity of a
single function. The metric average method complexity (AMC) is
the average of the Cyclomatic Complexity of all functions in the
application or module. Therefore, the AMCm of the application or
module m is calculated by the formula 𝐴𝑀𝐶𝑚 =𝑊𝑀𝐶𝑚/𝑁𝑃𝑀𝑚 .
The response for a class (RFC) is the number of functions that
respond to a message from the application or module itself. It is
calculated by counting the number of distinct functions that are
invoked by the application or module, no matter if the function was
defined inside the application or module itself or not. Functions
called multiple times are counted only once [8].

The metrics for measuring the property coupling are presented
next. Low values are indicative of loose coupling, while high ones
indicate tight coupling. The coupling between object classes (CBO)
is calculated by counting the distinct afferent and efferent modules
or packages of an application or module [8]. Since the example
applications do not have circular dependencies, this is the same as
the sum of the afferent coupling (Ca) and the efferent coupling (Ce).
Ca is calculated by counting the number of modules or applications
that call the target module’s functions or application. On the other
hand, Ce is calculated by counting the modules or packages from
which the target application or module calls functions. For example,
if the application A invokes a function of module B, the Ca of B,
as well as the Ce if A, increases by one. In the considered example,
no packages are included for the calculation of Ca since packages
usually do not call any functions of a Shiny application or module.
In the calculation of Ce, applications were not regarded because no
application or module calls another application.

Now, the metrics for evaluating the design property cohesion
are discussed. The possible and desired values differ between the
metrics. The lack of cohesion inmethods (LCOM) corresponds to the
difference between the number of function pairs without and with
common non-static fields. The LCOM of an application or module
m is calculated by 𝐿𝐶𝑂𝑀𝑚 = 𝑏 − 𝑐 , where 𝑏 equals the number of
function pairs that do not reference to similar non-static fields and
𝑐 equals the number of function pairs that do reference to at least
one similar non-static field [8]. Fields that are referenced indirectly
by the function of interest via invoked functions are also counted. If
the result is negative, LCOM is set to 0. This metric’s value should
be as low as possible, whereby a value of zero indicates a cohesive
application or module. However, the evaluation of a value depends
on the total number of defined functions in a component. Therefore,
the metric LCOM3 was developed to address this problem of the
lack of possibility of comparison. The LCOM3 of an application or
module𝑚 is calculated by 𝐿𝐶𝑂𝑀3𝑚 = ((𝑥 − 𝑓 · 𝑎))/((𝑎 − 𝑓 · 𝑎)),
where 𝑓 equals NPM𝑚 , a equals the sum of NOF𝑚 and NPRIF𝑚 and
𝑥 equals the sum of the number of referenced non-static fields of all
functions. If only one function is defined in an application ormodule
or has no non-static fields, LCOM3 cannot be calculated and is set to
0. The value of LCOM3 is always between 0 and 2, where 0 indicates
a high cohesion. Values above 1 are critical since this shows the

existence of values that are not accessed by any function within
this application or module (Henderson-Sellers, 1996, p. 147). The
metric cohesion among methods in class (CAM) of an application or
module m is calculated by𝐶𝐴𝑀𝑚 = 𝑝/((𝑦+ 𝑓)), where 𝑝 equals the
sum of the number of different types of method parameters of each
function defined in the application or module, 𝑓 equals the sum
of NPM𝑚 and NPRIM𝑚 and y equals the number of distinct types
of method parameter of all functions in the application or module.
A type of a parameter is thereby the class a parameter should
inherit, for example, a list, an integer or a data frame. Also, local
variables defined in the surrounded function of a private function
are considered to be parameters. The range of CAM is between 0,
which indicates low cohesion and 1, indicating high cohesion [3].

Finally, the calculated metrics for the assessment of the design
property encapsulation are presented. The number of private fields
(NPRIF) and the number of private methods (NPRIM) is calculated
by counting the corresponding elements in the application or mod-
ule. The data access metrics (DAM) correspond the ratio of NPRIF
to the total number of fields defined in an application or module.

7.2 Results of metrics and evaluation
The explained metrics were calculated for the modularized and
non-modularized software. For the non-modularized software, the
metrics were calculated collectively for the scripts run.R, ui.R, and
server.R. These three scripts of the modularized software were also
calculated as a group referred to as application. For modules of
the modularized software, the metrics were calculated individually
in each case. The sum and average of the values of the individual
modules were calculated for each metric to optimize the compa-
rability. For the design properties of coupling and cohesion, the
calculation of the sum of the modules is not meaningful because
these are a measure of the dependency on a component or within
the component itself.

The differences in results between the modularized and non-
modularized software are now considered for each design property.
Thereby the relationship to the sub-characteristics of the maintain-
ability is again addressed. An overview of the results is shown in
Table 4. For the modularized software, in addition to the sum and
the average, the results of only the application (app) itself are also
shown.

The sum of the metrics results associated with the design prop-
erty size is mostly larger for the modularized software than the
non-modularized software results. Exceptions are the NOF and the
NMCI and the NSTAF, for which there is no difference between
the considered software. Looking at the average of the individual
modules, they are all smaller than the monolithic application. The
larger sum of the modularized application can be explained because
at least two public methods are defined as almost every module
interface. This increases the NPM, the NMCE and therefore also
the NMC and the LOC. With the increasing size of software, the
analyzability and thus modifiability decreases. The metrics of the
design property size indicate worse maintainability of the modu-
larized application as a whole in comparison with the monolithic
software. However, the individual components are substantially
more compact and individually better maintainable. The same state-
ment can be made for the calculated metrics of complexity. The

SoftwareQuality Assessment of a Web Application for Biomedical Data Analysis IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

Design
Property Metric Modularized Not

Modu-
larizedOnly

App

All
Modules
(Sum)

All
Modules
(Avg)

Size

LOC 68 1067 50.81 865
NPM 0 54 2.57 0
NOF 0 0 0 2
NSTAF 0 1 0.05 1
NMC 48 934 44.48 858
NMCI 10 17 0.81 40
NMCE 48 917 43.67 818

Complexity
WMC 8 210 10 148
AMC 1.6 1.76 1.76 1.78
RFC 29 207 23.05 168

Coupling
CBO 9 - 4.33 13
Ca 0 - 0.95 0
Ce 9 - 3.38 13

Cohesion
LCOM 0 - 7.9 2593
LCOM3 0.59 - 0.34 0.96
CAM 0.6 - 0.44 0.07

Encapsulation
DAM 1 0.99 0.99 0.95
NPRIF 8 81 3.86 63
NPRIM 5 65 3.1 83

Table 4: Results of the calculated metrics for the application
in the non-modularized and modularized design

sum of the individual modules indicates a higher complexity of
the entire modularized software than the non-modularized soft-
ware. On average, however, the individual modules are again less
complex than the non-modularized software. The increased WMC
could also be caused by the increased number of functions, since
each function has a Cyclomatic Complexity of at least 1. Therefore,
the AMC is more meaningful for assessing the complexity, which
indicates that the modularized software functions are marginally
less complex. When calculating the sum of the RFC, the called
functions were only counted once across all modules. Again, this
higher value can be explained by the higher number of functions in
the modularized software. Also, concerning complexity, the state-
ment can be made that the modularized application has overall
worse maintainability than the non-modularized software. Once
again, however, the single modules are less complex and better
maintainable. As already explained initially, only the average value
of the modules is compared with the monolithic software for the
properties coupling and cohesion. Thereby all computed values
show a looser coupling as well as higher cohesion with the mod-
ularized software. The only exception is Ca, but this is since the
monolithic software as an application cannot be called from outside.
As discussed before, looser coupling increases all sub characteristics
of maintainability. The in-creasing cohesion improves the loose
coupling additionally and therefore has a positive effect on the
maintainability too. Finally, the metrics used to evaluate the soft-
ware design property encapsulation are evaluated. Here, it has to be
said that encapsulation is unnecessary for monolithic architectures
since the application is not called from the outside. Nevertheless,
the calculated metrics indicate good encapsulation of the modules

because especially DAM has a very high value. This increases the
sub-characteristic modularity, reusability and modifiability. Alto-
gether based on the metrics, the modularized software as an entire
system is larger and more complex than the monolithic software.
This indicates a worse analysability, modifiability, reusability and
thusmaintainability in total. However, the individual modules could
also be regarded separately from each other, whereby the computed
metrics indicate substantially higher maintainability. In addition to
the quantitative evaluation, the results are now also discussed via a
qualitative approach. Althoughmodularization increases the overall
size and complexity of software, it also improves its maintainability.
However, this depends on the modularization implementation – a
correct amount must be defined to have cohesive modules on the
one hand and loosely coupled modules on the other hand. This
allows a significant improvement of the reusability, analysability
and therefore also modifiability of the software. Also, a well-chosen
modularization offers the advantage of allowing the modules to be
considered separately from one another. The regarded section of
the software during the maintenance becomes much smaller and
less complex than with a monolithic application. Also, the effect of
changes within a module in other modules can be estimated and in-
tercepted much better. Modules can be called multiple times in one
or more applications, minimizing or even preventing redundant pro-
gram code. Altogether with a qualitative view, the modularization
simplifies the maintainability of the software substantially.

8 DEPLOYMENT
In a modern DevOps context pipelines usually concern automa-
tion from source code to the deployment of the finished prod-
uct. Pipelines are omnipresent in today’s IT landscape. From data
pipelines to integration and testing pipelines up deployment pipelines,
the term finds broad acceptance and a wide definition. In our system
architecture, the steps considered are building, testing, packaging,
and deploying a piece of software. We followed this DevOps para-
digm in our software development process as follows.

The web service is executed in a Docker container on a server
provided by the Fraunhofer ITEM. This server has 48 cores and
256 GB random access memory (RAM) and thus provides sufficient
computing power to analyze the gene expression data. The pro-
gram code is stored in a GitLab repository. A Dockerfile is used
to define the build and deployment of the service and define and
install prerequisites and dependencies. In turn, the building and
pushing of the image into the Docker registry is controlled via a
GitLab CI/CD file. This file enables continuous integration (CI) and
continuous deployment (CD), meaning running a defined pipeline
as well as deploying the application to production whenever a mod-
ification is made. The pipeline consists of a test stage for checking
the Dockerfile and a deploy stage for deploying the service to the
server. Using Portainer, a dashboard for the management of Docker
containers, the container for deployment is created and maintained.

9 CONCLUSION
The Shiny applications found in the literature are often quite small
and used as dashboards for data visualization. For handling the chal-
lenge of developing large applications, we investigated whether this
framework is suitable for the development of complex applications.

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Kristina Lietz, Ingmar Wiese, and Lena Wiese

Our analysis focuses on the formal evaluation of the maintainability
of Shiny applications. We provided a comparison of modularized
and non-modularized application version and followed a quantita-
tive approach based on chosen software quality metrics. Quantita-
tively, modularized applications are larger and more complex than
monolithic applications. However, the modules can be considered
independently so that the resulting maintainability of modularized
applications is rated better overall. Most software quality metrics
found in the literature are developed to evaluate object-oriented
(OO) principles. Therefore, a subgoal of our article was the inves-
tigation of the influence of OO principles on the maintainability
of software. To be able to transfer these principles to Shiny, the
equivalence of Shiny application elements to elements from the OO
paradigm needed for the computation of the metrics was examined.
For this, the purpose of the OO elements and components of Shiny
with the same or similar purpose were investigated. Based on these
assumptions, the software quality metrics were calculated. Our
application is located in the biomedical realm; hence the choice
for Shiny is rooted in the availability of libraries for the backend
pipeline in the R programming language. We believe that our discus-
sion generalizes to other web applications that follow a workflow
character and that relies on tabs in the web pages for which Shiny
components could be reused. Nevertheless, other domains that rely
less on specific R backend libraries and that might have a focus on
the microservice paradigm might profit more from alternative web
frameworks (for example, based on Javascript).

In future work, we aim to add capabilities to execute workflows
on other input file formats. A major research question in this regard
is whether the modularization of our software proves to support
the modifiability aspect.

ACKNOWLEDGEMENTS
This work was supported by the Fraunhofer Internal Programs
under Grant No. Attract 042-601000.

REFERENCES
[1] Affymetrix, Inc. 2019. Transcriptome Analysis Console (TAC) 4.0.2 User Guide.
[2] Tibor Bakota, Péter Hegedűs, Gergely Ladányi, Péter Körtvélyesi, Rudolf Ferenc,

and Tibor Gyimóthy. 2012. A cost model based on software maintainability. In
2012 28th IEEE International Conference on Software Maintenance (ICSM). IEEE,
316–325.

[3] Jagdish Bansiya and Carl G. Davis. 2002. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on software engineering 28, 1 (2002),
4–17.

[4] Verónica Bolón-Canedo and Amparo Alonso-Betanzos. 2019. Microarray Bioin-
formatics. Springer.

[5] Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spell-
man, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A Ball, Helen C
Causton, et al. 2001. Minimum information about a microarray experiment
(MIAME)—toward standards for microarray data. Nature genetics 29, 4 (2001),
365–371.

[6] Terence A Brown. 2018. Genomes 4th edition. Garland science.
[7] Seth Carbon, Eric Douglass, Benjamin M Good, Deepak R Unni, Nomi L Harris,

Christopher J Mungall, Siddartha Basu, Rex L Chisholm, Robert J Dodson, Eric
Hartline, et al. 2021. The Gene Ontology resource: enriching a GOld mine. Nucleic
Acids Research 49, D1 (2021), D325–D334.

[8] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[9] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. 1994. Using metrics to
evaluate software system maintainability. Computer 27, 8 (1994), 44–49.

[10] Ron Edgar, Michael Domrachev, andAlex E Lash. 2002. Gene ExpressionOmnibus:
NCBI gene expression and hybridization array data repository. Nucleic acids
research 30, 1 (2002), 207–210.

[11] John E Gaffney Jr. 1981. Metrics in software quality assurance. In Proceedings of
the ACM’81 conference. 126–130.

[12] Tamas Galli, Francisco Chiclana, and Francois Siewe. 2020. Software Product
Quality Models, Developments, Trends, and Evaluation. SN Computer Science 1,
3 (2020), 1–24.

[13] R Gentleman and Wolfgang Huber. 2008. Processing Affymetrix Expression Data.
In Bioconductor Case Studies. Springer, 25–45.

[14] Robert C Gentleman, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel
Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry,
et al. 2004. Bioconductor: open software development for computational biology
and bioinformatics. Genome biology 5, 10 (2004), 1–16.

[15] Hinrich Gohlmann and Willem Talloen. 2009. Gene expression studies using
Affymetrix microarrays. CRC Press.

[16] International Organization for Standardization. 2016. Systems and Software
Engineering: Systems and Software Quality Requirements and Evaluation (SQuaRE):
Measurement of System and Software Product Quality. ISO.

[17] Bernd Klaus and Stefanie Reisenauer. 2016. An end to end workflow for differen-
tial gene expression using Affymetrix microarrays. F1000Research 5 (2016).

[18] Michele Lanza and RaduMarinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

[19] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[20] National Center for Biotechnology Information. [n.d.]. https://www.ncbi.nlm.
nih.gov/geo/info/geo2r.html.

[21] Alexander Schatten, Stefan Biffl, Markus Demolsky, Erik Gostischa-Franta,
Thomas Östreicher, and DietmarWinkler. 2010. Best practice software-engineering:
Eine praxiserprobte Zusammenstellung von komponentenorientierten Konzepten,
Methoden und Werkzeugen. Springer-Verlag.

[22] Paul Teetor. 2011. R cookbook: Proven recipes for data analysis, statistics, and
graphics. O’Reilly Media, Inc.

[23] Valerio Terragni, Pasquale Salza, and Mauro Pezzè. 2020. Measuring Software
Testability Modulo Test Quality. In Proceedings of the 28th International Conference
on Program Comprehension. 241–251.

[24] Persis Voola and A Vinaya Babu. 2013. Comparison of requirements prioritization
techniques employing different scales of measurement. ACM SIGSOFT Software
Engineering Notes 38, 4 (2013), 1–10.

[25] Guangyan Zhou, Othman Soufan, Jessica Ewald, Robert EW Hancock, Niladri
Basu, and Jianguo Xia. 2019. NetworkAnalyst 3.0: a visual analytics platform
for comprehensive gene expression profiling and meta-analysis. Nucleic acids
research 47, W1 (2019), W234–W241.

https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html
https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html

	Abstract
	1 Introduction
	2 Use Case: Gene Expression Analysis
	2.1 Data Format
	2.2 Workflow

	3 Software Quality
	4 Requirements Analysis and Comparison to Related Work
	5 Shiny Modularization
	6 Software Design Principles
	6.1 Influence of OO design principles on maintainability
	6.2 Transfer of OO concepts to Shiny

	7 Software Quality Analysis
	7.1 Metrics calculation
	7.2 Results of metrics and evaluation

	8 Deployment
	9 Conclusion
	References

