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ABSTRACT
The efficiency of Machine Learning (ML) models has widely been
acknowledged in the healthcare area. However, the quality of the
underlying medical data is a major challenge when applying ML
in medical decision making. In particular, the imbalanced class
distribution problem causes the ML model to be biased towards
the majority class. Furthermore, the accuracy will be biased, too,
which produces the Accuracy Paradox. In this paper, we identify
an optimal ML model for predicting mortality risk for Intensive
Care Units (ICU) patients. We comprehensively assess an approach
that leverages the efficiency of ML ensemble learning (in particular,
Gradient Boosting Decision Tree) and clustering-based data sam-
pling to handle the imbalanced data problem that this model faces.
We comprehensively compare different competitors (in terms of
ML models as well as clustering methods) on a big real-world ICU
dataset achieving a maximum area under the curve value of 0.956.

CCS CONCEPTS
• Information systems → Decision support systems; Cluster-
ing; • Computing methodologies → Machine learning algo-
rithms; • Applied computing→ Health informatics.
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1 INTRODUCTION
Healthcare is an important area to reap the benefits of advanced
Artificial Intelligence and big data. Several Machine Learning (ML)
models can be utilized for analyzing big medical data and for imple-
menting an accurate, intelligent medical decision support system.
Different intelligent predictions can be achieved such as disease
diagnoses, medical prognoses, and individualized medication plans.
Accuracy is a crucial requirement for such a system. The selection
of an ML model influences system accuracy. Moreover, the quality
of the used medical dataset is another influential factor for accuracy
and is the main challenge when implementing such a system.

In this paper, we implement and experimentally evaluate a pre-
dictive model for assessing the risk of mortality for the Intensive
Care Unit (ICU) patients by leveraging the efficiency of the machine
learning model. The main challenge we face is the class imbalance
in the dataset: In the analyzed mortality dataset the occurrence of
suffered (deceased) cases is less frequent than the survived cases.
An imbalanced dataset makes the ML model biased towards the
majority class. Hence, it is difficult for the model to learn from
such data to predict the minority class (which in our use case is
the positive class or the class of interest). Therefore, building a
model requires efforts to overcome the class imbalance; solving this
problem promotes the learning process for the model and optimizes
the prediction accuracy.

The approaches to handle this problem are categorized into
three categories (according to Galar et al. [12]): algorithm level ap-
proaches, data level approaches, and cost-sensitive learning meth-
ods. The data level approach covers the data sampling methods
(to balance the dataset) which can further be divided into over-
sampling and under-sampling methods. The algorithm level ap-
proach develops an algorithm that adapts to the characteristics
of the imbalanced data. The cost-sensitive learning method is a
hybrid of both data and algorithm level approaches with different
classification costs of the classes.

To overcome the imbalanced class problem our ML model en-
counters, we develop a hybrid approach based on data and algo-
rithm level approaches. To approve the suitability of our approach,
we compare it with other approaches. We validate our approach on
a real-world, commonly used medical dataset: the Medical Infor-
mation Mart for Intensive Care (MIMIC-III) dataset [19]. The main
contributions of this paper are dedicated to handling the imbalanced
data problem when predicting risk of mortality of ICU patients that
incorporates 1) proposing a hybrid approach based on ensemble ML
model and under-sampling the dataset 2) developing a method to
implement clustering-based under-sampling to balance the data 3)
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providing an approach to optimize the performance of K-means++
under-sampling. We conduct an empirical analysis to other models
and under-sampling methods to validate the effectiveness of our
approach.

This paper is organized as follows. First, we briefly describe
the dataset used for our intended prediction task in Section 2. We
next provide a comparative analysis of different ML models for
the task at hand and choose the best-performing candidate in Sec-
tion 3. Section 4 provides a description as well as analysis of the
proposed clustering-based under-sampling method to handle the
imbalanced data. Next, Section 5 presents the performance opti-
mization approach and the accompanying results in conjunction
with an in-depth comparison to other clustering candidates. Sec-
tion 8 provides a survey of related approaches. Finally, Section 9
concludes the paper.

2 THE DATA SET
In this paper, we use the real-world critical care database Medical
Information Mart for Intensive Care (MIMIC) which is provided
by [19]. The data is collected from patients admitted to critical
care units at the Beth Israel Deaconess Medical Center in Boston,
Massachusetts in June 2001 to October 2012. It is a publicly available,
widely used, and patient privacy protected dataset. We use MIMIC-
III which is the most recent and significantly extended data set
and thus has not been used much in evaluations so far. MIMIC-III
comprises over 61,000 hospital admissions to critical care units
of 53,423 adult admissions and 7870 neonate admissions. In our
study, we are interested in predicting the risk of mortality for adult
patients. Thus, only the data of adult patients (aged 15 years or
above) are included. We extracted the high-quality entries that have
a sufficient amount of data measurements resulting in a data set
size of 32,635 patients. Our selection of predictor variables was
inspired by previous work by Lee et al. [22]. The predictor variables
contain data from the first 24 hours of each ICU stay. We extracted
76 predictor variables including minimum and maximum values
of some vital signs from every 6 hours of the 24 hours in the ICU
stay and some minimum and maximum lab variables. Most notably,
in the extracted MIMIC-III dataset we observe a high imbalance
between the negative class (there are 28,974 survived patients) and
the positive class (there are only 3,661 suffered patients out of the
total 32,635). The ratio of the instances of the negative class to the
positive class is hence 89:11. We investigate in this paper the effect
of class imbalance on the analyzed machine learning models and
compare different approaches to handle the class imbalance.

3 CHOOSING THE BEST ML MODEL
The first part of our investigation is assembling the basic learning
model and choosing a good candidate to build the prediction on.
The results of a comprehensive comparison are presented in this
section.

3.1 Ensemble Machine Learning Model in
Comparison to other Models

Different machine learning models are available to achieve our task
of mortality risk prediction. It is generally assumed that ensemble
models (that are more complex models built up from a set of simpler

models) achieve a much better prediction performance. We aim
to verify this assumption on our chosen dataset. The following
methods are included in our comparison:

• Decision Tree (DT). The DT builds a classification model in
the form of a tree. The medical predictor variables are used
as nodes for the DT. The different values of the predictor
variable constitute the tree branches. The leaf nodes are the
value of the risk prediction; in case of a binary classification
either yes or no. By following the nodes of the tree starting
from the root node to each leaf nodes of a DT, a decision can
be taken – in our case, either a patient has a death risk or
not. DT haven been used for medical decision making for
example in [22].

• Logistic Regression (LR). The task of predicting the risk of
mortality can be described as a classification task. A patient
might have a risk of death or does not (either 1 or 0). Logistic
Regression (LR) estimates the probability that an instance
belongs to a particular class (i.e., the probability of mortality
risk). The instance/patient belongs to the positive class (has
a risk) when the probability is greater than 50% otherwise it
belongs to the negative one (has no risk). LR has been used
for medical prediction for example in [21].

• K-Nearest Neighbor (KNN). Prediction of the class label for
an instance/patient denoted x is based on the training in-
stances. The prediction of the risk of mortality of patient x is
derived from the patients that have similar medical records.
The user-defined positive integer k identifies the k neighbors
nearest to x from which the predicted class of x is assigned.
Hence, distances between x and all the training instances are
computed. Many related approaches use KNN for different
medical predicting purposes such as [18, 26].

• Gradient Boosting Decision Tree (GBDT). Multiple Decision
Trees (DT) are ensembled to produce a more robust model.
First of all boosting refers to hypothesis boosting that is “any
ensemble method that can combine several weak learners
into a strong learner” [13]. The popular boosting methods
are AdaBoost (short term of Adaptive Boosting) and Gradi-
ent Boosting. AdaBoost sequentially builds a better predictor
based on the previous one by adjusting (i.e., increasing) the
weight of the misclassified training instances. Similar to Ad-
aBoost, Gradient Boosting in every iteration builds a better
predictor by correcting its predecessor. However, it is not
based on updating the weight of the instances. It is based on
fitting to the residual errors of the previous predictor. Each
additional DT optimizes the classification error of the overall
model. Moreover, GBDT reduces bias and variance. More
details on Gradient Boosting can be found in [9, 10]. GBDT
has previously been used for medical decision making for
example in [5].

3.2 Result of the Model Comparison
In order to choose the best-performing model, we compare our
candidate ML models – the Decision Tree (DT), Logistic Regression
(LR), K-Nearest Neighbor (KNN), and Gradient Boosting Decision
Tree (GBDT) – on the original dataset (that is, the imbalanced
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Table 1: Overview of the model parameters

DT From the available options for the splittin criterion (in-
formation gain, gain ratio and Gini index), we chose the
gain ratio as the best splitting criterion. The max depth
of 41 is the optimal value experimentally determined
from 1 until 100. After testing the minimum samples
needed to do a split from the range 1 to 100, the value
of 11 is chosen.

LR For the regularization parameter, we used Lambda of
zero.

KNN We tested the values between 1 to 50 for the number of
the nearest neighbors k ; k=21 is optimal. The weighted
vote approach to combine the class labels outperforms
the majority vote for our case. The used distance mea-
sure is Euclidean distance.

GBDT To avoid any over-fitting that GBDT might produce,
we use a small number of trees (20 trees) and small
maximal depth (5 levels) of each tree.
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Figure 1: The Prediction Performance of the Models on the
Imbalanced Dataset.

data) by different accuracy metrics (see Figure 1). In all cases, 10-
fold cross-validation is used for evaluating the models. All the
parameters of each model are selected by using a grid search; an
overview of the chosen settings for each model is given in Table
1. All the data pre-processing and model implementation, training,
and testing were performed in RapidMiner studio version 9.2 in the
Educational edition. The computation took place under Windows
10 with an Intel i5-7300U CPU at 2.70 GHz with 32 GB available
RAM.

From Figure 1, we notice that all themodels have high and similar
accuracy. Moreover, we find that the models were more successful
in predicting survival cases (the negative class) rather than the
suffered cases (the positive class). The reason lies in the imbalanced
dataset we use. This problem of imbalanced class distribution causes
the classifier to be extremely biased toward the majority class. The
high predictive accuracy is a sign for overall prediction of the
majority class which is the survived case. This situation – where the
higher accuracy metric is not an indicator of an excellent classifier
performance – is called Accuracy Paradox [31]. It is paradoxical

when accuracy is not a goodmetric for the predictive model because
the accuracy is biased to the majority class.

We can conclude from this case that having a highly accurate
model is not enough indication of a useful model. In related work,
Valverde-Albacete et al. [31] state that a predictive classifier model
with a low accuracy may have an even higher predictive power
than a model with high accuracy. In particular, they stress that this
applies to the highly imbalanced or skewed training data where
the classifier produces a highly accurate result by assigning all the
cases to the majority class. We can confirm this widely observed
phenomenon on our chosen data set. For instance, even though DT
and KNN have high accuracy, they have a very low Recall (that
measures how often a positive class instance is truly predicted as
a positive one). Following the same argumentation, Hoens et al.
[16] and Chawla [3] state that predictive accuracy is inappropriate
when data is imbalanced. They recommend alternative metrics
to evaluate the classifier performance on the imbalanced dataset.
They recommend ROC curves, Precision and Recall, and F-measure.
Furthermore, He et al. [15] state that accuracy is sensitive to the
class distribution while Precision and Recall are not. Therefore,
we should consider other metrics to evaluate our models besides
accuracy. In particular, we claim that, regarding the risk of mortality
prediction, the cost of misclassification of different classes (the
positive and negative class) are different: the cost of misclassifying
a patient with mortality risk as not having the risk is higher than
misclassifying the healthy patient as having the risk. In other words,
the cost of false negative (FN) is higher than the cost of false positive
(FP) due to wronglyfully disregarding a patient’s severe health state.
In evaluating our model, we should hence consider the metrics that
reflect this. We conclude that Recall is more crucial for our case
than Precision. Rather than considering the overall accuracy of our
model we focus on Recall, AUC (area under the ROC curve), and
F-measure as classification performance metrics.

Looking at Figure 1, we find that GBDT has the best performance
trade-off through all the metrics and the highest AUC. Specifically,
for the Recall – which we consider a critical metric – the GBDT
has the highest value. Moreover, in the overall comparison, the LR
has the second highest Recall and AUC values. The DT gives the
random guessing value in AUC and the lowest Recall value. The
KNN also has a low Recall and low AUC values in comparison to
GBDT and LR.

Hence, in comparison to the other models, the GBDT already
gives high predictive performance even without any performance
optimization regarding the imbalanced data problem. Furthermore,
the GBDT significantly outperforms the DT which confirms the
effectiveness of the ensemble technique on the imbalanced dataset.
Therefore, we identified GBDT as the best model for our prediction
task. Moreover, we hypothesize that GBDTwill provide even higher
predictive performance with a balanced dataset.

4 K-MEANS++ CLUSTERING-BASED
UNDER-SAMPLING FOR IMBALANCED
DATA

To overcome the imbalanced class problem, our approach relies
on two components: we analyze the GDBT approach (that uses
the power of the ML ensemble technique) in conjunction with a
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data sampling technique. Hence we now comprehensively test the
chosen ML ensemble model GBDT on a balanced dataset to predict
the risk of mortality.

4.1 Balancing the Data Set
After choosing an appropriate model, the second part of our ap-
proach is identifying a good re-sampling method. As already men-
tioned, in the used MIMIC-III dataset there are 28,974 survived
patients and only 3,661 suffered patients out of 32,635; the original
ratio of the instances of the negative class (survived patients) to
the positive class (suffered patients) is hence 89:11. We re-sample
the imbalanced dataset to balance the distribution of the classes:
our goal is to have a balanced dataset with 1:1 ratio of the classes.

Under-sampling refers to the fact that only some instances of
the majority class are chosen for the training data set. A significant
drawback of under-sampling is that it might remove some useful
information. Random under-sampling (that is, choosing training
instances from the majority class at random) is one approach for
under-sampling the majority class that has this problem. Therefore,
the under-sampling has to be done carefully. In our approach we
analyze the deployment of clustering algorithms prior to under-
sampling; this approach avoids the deletion of important samples
that occurs with random under-sampling.

In our first test, we use the common K-means clustering before
under-sampling the majority class. To equalize the classes to a
1:1 ratio we select from the majority class samples of the same
size as the minority class. Thus, the k value (the number of the
clusters) equals the size of the minority class (i.e., k=3,661). K-means
clustering under-sampled the majority class (negative class) into
k clusters. Then, only the centroids of the clusters are used as
representatives for this class. The outcome data are combined with
all the instances of the minority class (positive class). The initial
cluster centers are determined by using K-means++ algorithm [2]
(see Section 6 and Table 3 for details).

4.2 Result of K-means++ Clustering-based
Under-sampling

We test the effect of learning from a balanced dataset by ML models
for predicting the risk of mortality. Our main focus is on the en-
semble learning model (the GBDT) applied on a K-means++ based
re-sampled dataset (see Section 4.1). Furthermore, the other ML
models are also applied in conjunction with the K-means++ under-
sampling to observe their performance as shown in Figure 2. The
10-fold cross-validation is used for evaluating the models and the
sampling method.

Comparing the predictive performance of the models on the im-
balanced dataset (Figure 1) with their performance on the balanced
dataset (Figure 2) we conclude that in general all the performance
metrics improved with the balanced dataset. Specifically, the bal-
anced dataset helps to improve the Recall, which is crucial for this
study. Thus, the balanced dataset improves the prediction of the
minority class (the suffered patient cases). Moreover we can con-
clude that under-sampling can avoid the accuracy paradox which
occurred on the imbalanced dataset. The highest performance im-
provements were obtained by the GBDT, which outperforms all the
other models.
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Figure 2: The Prediction Performance of theModelswith the
Balanced Dataset by K-means++ Under-sampling where k =
Size of the Minority Class.
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Figure 3: Comparison of GBDT with Random Under-
sampling and with The K-means++ Under-sampling where
k = Size of the Minority Class.

From the previous tests, we find that GBDT outperforms the
other models in both cases – with the imbalanced dataset and with
the balanced dataset (i.e., based on K-means++ under-sampling).
Thus, the efficiency of the ensemble model GBDT is approved in
both cases. Furthermore, we observe that our approach for imple-
menting K-means++ under-sampling to create a balanced dataset
significantly lessens the impact of the accuracy accuracy paradox
for all the models.

4.3 Comparison to Random Under-Sampling
While fixing GBDT as the best-performing model, we compare our
K-means++ under-sampling approachwith another under-sampling
method: we also tested the GBDT on random under-sampling. In
the random under-sampling, the majority class is randomly under-
sampled to the same size as the minority class (i.e., 3,661). Then,
the remaining majority class instances are combined with all the
instances of the minority class to produce a balanced dataset. The
comparison result is given in Figure 3.

We can draw the following conclusions. Overall, the K-Means++
clustering-based under-sampling for the majority class outperforms
the random under-sampling (see Figure 3). The K-means++ under-
sampling improves all the accuracy metrics. The accuracy improved
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Table 2: Clustering Run Time for Different Cluster Sizes k .

k run time

10 2 seconds
100 19 seconds
500 13 minutes
900 40 minutes
1,830 2 hours and 44 minutes

by 11.34% and the Recall improves with K-means++ by 15.73%. K-
means++ based under-sampling produces an AUC of 0.926 while the
random under-sampling gives an AUC of 0.854; hence K-means++
improves the AUC by 8.43%. The reason for these performance im-
provements could be ascribed to the main disadvantage of random
under-sampling where we lose potentially relevant information
from the omitted samples. However, by our K-means++ under-
sampling approach, we retain more relevant information of the
majority class.

5 IMPROVING THE PERFORMANCE OF
K-MEANS++ CLUSTERING-BASED
UNDER-SAMPLING

One weakness of the proposed K-means++ cluster-based under-
sampling implementation is the long run time to build the clusters.
K-means++ clustering groups similar instances of the input data
set. The similarity is defined by the distance measure between
the instances and the centroid of the clusters. With a large cluster
number (we have 3,661) it takes a long time to build the clusters and
the centroids (by K-means++ algorithm). The K-means++ clustering
of the entire majority class of 28,974 patients on our test system
takes 7 hours and 11 minutes.

We hence propose a method to improve the long run time of
the previously implemented K-means++ under-sampling (where
k equals the size of the minority class). It is based on combin-
ing the K-means++ under-sampling (with smaller k) and random
under-sampling. We proceed as follows. First, the majority class is
clustered into k clusters by K-means++. Then, equally sized subsets
are randomly selected from each cluster where the size of these
subsets in total equals the size of the minority class (i.e., 3,661). It
might happen that the size of a cluster is smaller than the size of
the subset that needs to be extracted; in such a case, the remain-
ing number of majority class instances is extracted from the other
clusters that have a larger number of instances.

We test different amounts of clusters k = 10, 100, 500, 900, and
1,830 (that is, half of the minority class). The run time was much
less than the previous approach (see Table 2); that is, with smaller
k we can achieve significant run time improvements.

Apart from the run time, the question arises what effect the
amount of clusters has on the prediction performance. We test
the ensemble model GBDT with those balanced datasets that are
obtained by different k (see Figure 4). The predictive performance of
the previous approach (with k=size of the minority class) is higher
than this combined approach for any of the tested values of k .
However, in comparison to the random under-sampling (Figure 3),
the combined approach (for any tested values of k) improves the
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Figure 4: K-means++ Under-sampling with Different Num-
bers of Clusters.
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recall – i.e., the prediction of the risk of mortality for the patients
who are actually in risk.

From Figure 4 we find that number of clusters of k=10 provides
the best performance metrics for this study. The value of k=10
optimizes the AUC and F-measure compared to the random under-
sampling. We evaluate the clusters that are created from different
amounts k of clusters by the Davies Bouldin (DB) index [6]. The
DB index is a ratio of the sum of within-cluster scatter to between-
cluster separation. The scatter within a cluster is the standard devia-
tion of the distance between the cluster center (centroid) and all the
samples of this cluster. The separation between two clusters is the
distance between their centroids. The lowest DB index produces
the most proper clustering.

The result of the DB index for different k values from 10 to 1,830
is shown in Figure 5. We find that k=10 has the lowest (i.e., the
best) DB index. In conclusion, the combined approach between K-
means clustering and random under-sampling with k=10 provides
the lowest run time and outperforms the random under-sampling
performance.

As a result, balancing the dataset by under-sampling has a sig-
nificant impact on optimizing the model prediction performance of
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both classes (the majority and the minority class). The tested under-
sampling methods (i.e., K-means++ and random under-sampling
and the hybrid of them) improve the performance of prediction
on the imbalanced dataset. However, our approach of the stan-
dalone K-means under-sampling was the best. The representative
selection of the majority class is the major strategical decision
of under-sampling. In the proposed methodology of K-means++
cluster-based under-sampling, the k centroids from the k clusters
are selected as representatives of the majority class. This approach
avoids throwing away the important information of the majority
class, which occurs with random under-sampling.

Furthermore, we can conclude that the combination of K-means++
and random under-sampling into a more efficient variant does
not outperform the originally proposed K-means++ method. Even
though we implement K-means++ clustering for smaller k , the sub-
sequent random representative selection causes information loss.
Yet with our study, we were able to identify an optimal k-value that
in the combined variant together with random under-sampling im-
proves the run time of the proposed method (because of the smaller
k value) and at the same time optimizes the prediction performance
in comparison to the pure random under-sampling.

6 COMPARISON TO OTHER CLUSTERING
METHODS

Several other clustering methods are available and could be used
for under-sampling the data set. For further approval of our chosen
approach we compare it with other clustering approaches for under-
sampling: K-medoids, DBSCAN, and K-means (without using K-
means++ algorithm). We briefly assess the difference of the four
approaches:

• K-means: Clustering the data starts with randomly selected
k initial centroids for k clusters. Then, a distance measure
is used to assign all the data points to the nearest cluster
centroid. After assigning all the data points to the clusters,
the centroid of each cluster is recalculated by averaging the
attributes of data instances of this cluster. This recalcula-
tion ends when the centroids no longer change or when the
maximum number of optimization iterations is reached.

• K-means++: It is the approach that explained in Section 5. It is
based on K-means. The only different between K-means and
this method is that the k start points are determined using K-
means++. The initial cluster centers iteratively are chosen by
taking the distance to the previously chosen cluster centers
into account. The drawback of this approach is an increased
runtime for this cluster initialization step.

• K-medoids: instead of computing an artificial centroid as
the average of all cluster members, a “real” element called
medoid is chosen as the representative of the cluster. Points
are assigned to clusters such that the distance from the
medoid to all the data points in a cluster is minimal.

• DBSCAN [8]: DBSCAN stands for density-based spatial clus-
tering of applications with noise. In contrast to K-means
and K-medoids (that is, distance-based approaches where
the clustering depends on the distance between the cluster
center or centroid and each data point) DBSCAN is a density-
based clustering where the clusters are defined by the density

Table 3: Overview of the clustering model parameters

K-medoids The cluster number is k=10. The maximal num-
ber of runs of the K-medoids with the random
initialization of the start points is 1. The maximal
number of optimization iterations for one run of
K-medoids is 10. The numerical measure used to
find the nearest neighbors is Euclidean distance.

K-means The cluster number is k=10. The maximal number
of runs of the K-means with the random initializa-
tion of the start points is 1. The maximal number
of optimization iterations for one run of K-means
is 10. The numerical measure used to find the
nearest neighbors is Euclidean distance.

K-means++ The cluster number is k=10. The k start points
are determined using K-means++. The maximal
number of optimization iterations for one run of
K-means++ is 10. The numerical measure used to
find the nearest neighbors is Euclidean distance.

DBSCAN In order to have a similar cluster number for fair
comparison we set minPts=5 and ϵ=1.0; this re-
sults in 12 clusters of which one cluster consisting
only of the noise points is excluded. The numeri-
cal measure used to find the nearest neighbors is
Euclidean distance.

of the points. DBSCAN relies on density reachability and
density connectivity among the data points. A point P is
density reachable by a point Q, if the distance between them
is within a distance bounded by a value ϵ . Moreover, the
amount of point’s neighbors which are within the ϵ distance
should be above a specified threshold: the parameter minPts
denotes the minimum number of data points to define a clus-
ter. In case no sufficiently sized cluster can be found for a
point, this point is considered a noise point. Thus, the two
main parameters of DBSCAN are ϵ and minPts.

We assess the two additional models (K-medoids and DBSCAN)
in a similar setting as chosen for the runtime-optimized K-means++
as analyzed in Section 5. That is, we obtain a certain set of clusters
and randomly choose elements of these clusters to obtain an under-
sampledmajority class.We start the comparisonwith a small cluster
number; then, if any approach outperforms our runtime-optimized
approach in term of accuracy or the runtime, we test it with the
same setting of the original approach in Section 4. We represent all
the experimentally selected parameters of each clustering model in
Table 3.

Regarding the optimal parameters for DBSCAN, we tested differ-
ent values of the parameters minPts and ϵ . We observed that with
smaller ϵ , the cluster of the noise points is getting larger (that is, an
extensive amount of data of the majority class is not clustered). For
instance, with ϵ=0.1, the entire majority class is considered noise
points. We furthermore tested ϵ=0.5 with minPts=5 (which gives 29
clusters, and the noise cluster contains 4,285 instances) as well as
ϵ=0.7 with minPts=5 (which gives 17 clusters, and the noise cluster
contains 749 instances). Consequently, we selected the value of ϵ
and the minPts shown in Table 3 that gives a cluster number (12



A Hybrid Machine Learning Approach for Improving Mortality Risk Prediction on Imbalanced Data iiWAS2019, December 2–4, 2019, Munich, Germany

77,25 75,23 74,72 74,0474,06
71,9 71,39 70,27

83,91 82,85 82,79 83,39
78,67 76,96 76,62 76,26

85,6
83,5 83,2 82,3

0

10

20

30

40

50

60

70

80

90

100

K-means++ K-means DBSCAN K-medoids

Pe
rfo

rm
an

ce
 (

%
)

Accuracy Precision Recal l F-Measure AUC

Figure 6: Comparison of our Approach (K-means++) with
other Clustering Approaches for Under-Sampling: K-means,
K-medoids and DBSCAN.

Table 4: The run time for clustering model for under-
sampling

K-medoids 1 hour and 25 minutes
K-means 1 second

K-means++ 2 seconds
DBSCAN 1 hour and 13 minutes

clusters including one cluster of noise points) similar to the other
clustering models.

We test the ensemble model GBDT with those balanced datasets
that are obtained by the under-sampled majority class (by com-
bining each of the different clustering models with random under-
sampling) and the entire minority class (see Figure 6). The 10-fold
cross-validation is again used for evaluating the models with the
different clustering methods. We find that our approach of runtime-
optimized K-means++ under-sampling (as described in Section
5) outperforms all the other clustering-based under-sampling ap-
proaches.We are ordering the clusteringmodels for under-sampling
from the best to the worst: K-means++, K-means, DBSCAN then
K-medoids. We noticed how using K-means++ to determine the
initial points of the clusters (i.e., as we have done in our approach)
improves the accuracy in comparison to K-means where the initial
points are determined randomly. The Recall is almost the same
between the models (because the minority class the positive cases
is the same between the models). However, the other metrics are
different among the models. Yet, the difference is not big.

One could argue that the performance of our main approach in
Section 4 is significantly higher than the performance of runtime-
optimized K-means++ (see Section 5). Hence, we could think of
applying a similar approach to the other cluster models (that is, with
the amount of clusters k equal to the minority class size). However,
we argue that it is not computationally feasible and hence it is not
worthwhile to try it. The reason goes back to the computational cost
for each clustering models. The run time that each clustering model
takes to sample the majority class is shown in 4. We can notice
the clear cost-effectiveness of our chosen approach. Even with the
small cluster number for K-medoids (10 clusters) and DBSCAN
(11 clusters plus one cluster of noise points), the run time was too

long in comparison with our approach using K-means++. There is
only a small difference between K-means and our chosen approach
using K-means++ regarding the run time. However, the resulting
accuracy enhancement is worth this small computational cost.

As a result, we find that our approach of runtime-optimized K-
means++ outperforms the other clustering-based under-sampling
models (K-medoids and DBSCAN) in term of accuracy metrics and
remarkably in the computational cost.

7 APPROACHES FOR SELECTING THE
MAJORITY CLASS REPRESENTATIVES
FROM THE K-MEANS++ CLUSTERS

After having assessed the computation-time performance of K-
means++, we now want to optimize the selection of the data in-
stances from the majority class clusters. As stated before the selec-
tion of the majority class representatives is a critical point during
the under-sampling process. Therefore, rather than randomly choos-
ing such representatives, we consider testing another approach for
election – the main idea is based on selecting the nearest neighbors
of each centroid.

We cluster the majority class into k clusters. The value k is
either equal to the size of the minority class or equal to 10; recall
that 10 was approved to be the optimal cluster number for our
data in Section 5. Then, for each cluster, we calculate the distance
between the cluster’s centroid and the cluster’s points (by Euclidean
distance). Afterward, we select from each cluster the Top1 or TopN
nearest neighbors to the centroid. To have a balanced dataset with
1:1 ratio, the selected data points from the majority class should be
equal to the size of the minority class. Consequently, the number
of the nearest neighbors is the ratio of the size of the minority class
to the cluster numbers. In case the cluster numbers equal to the
size of the minority class, we select the Top1 nearest neighbor to
the centroid. Otherwise, we take the TopN nearest neighbors to the
cluster centroids with N = 366.

We compare this approach to the previous approaches from
Section 4 and Section 5. All the approaches use K-means++ to
cluster themajority class for under-sampling, however, the selection
of the majority class representatives follows different approaches.
The settings of the different approaches are summarized in Table
5. The resulting under-sampled data of the majority class from
these different approaches are combined with the minority class
before starting the classification.We compare the K-means++ under-
sampling method with the different approaches for selecting the
majority class representatives on GBDT by 10-fold cross-validation.

Comparing the results in Figure 7, we find that the approach of
selecting the TopN nearest neighbors to the centroid in general out-
performs all the other approaches. Only the recall of our primary
method (selecting the cluster centroids from Section 4) is higher
by 3.78%. Predicting the positive class of patient at risk of death is
crucial in our case – and hence we consider the approach with high-
est recall the most appropriate for us. Nonetheless, the approach
of selecting the TopN nearest neighbors to the centroid (with a
small k) is a great competitor to the method of selecting the cluster
centroids. It has a good balance between the accuracy metrics and
a short computational time (a few seconds) in comparison to the
long time (more than 7 hours) of the approach with highest recall.
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Table 5: The different approaches for K-means++ clustering for under-sampling

Approach Number of clusters (k) Instance selection

K-means++ and Centroids k = size of the minority class Clusters’ centroids (method in Section 4).
K-means++ and Random sampling The optimal k (k=10) Randomly from each cluster select num-

ber of instances = size of the minority
class/number of clusters k (method in Sec-
tion 5).

K-means++ and Top1 centroids’ nearest neighbor k = size of the minority class Select the nearest neighbor to the cluster
centroid.

K-means++ and TopN centroids’ nearest neighbors The optimal k (k=10) Select the TopN nearest neighbors to the
cluster centroid, TopN = size of the minor-
ity class/number of clusters k .
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Figure 7: Comparison of K-means++ Under-sampling with
Different Approaches for Selecting the Majority Class Rep-
resentatives.

Unexpectedly, the approach that combines K-means++ and ran-
dom sampling outperforms themethod of choosing the Top1 nearest
neighbors. The reason might correspond to the optimal k value that
the hybrid method of K-means++ and random sampling used.

As a conclusion, the cluster numbers k and the approach to se-
lect the instance are crucial influencers on selecting the majority
class representatives (from the K-means++ clusters) and the model
accuracy. Selecting the nearest neighbors to the centroids works
best with a small k (i.e., we choose TopN). Whereas, with a signif-
icantly larger k value selecting the centroids is the better choice
than choosing the Top1 nearest neighbor.

In general, all the approaches that used K-means++ clustering-
based under-sampling with different methods for selecting the
majority class representatives are significantly improving the pre-
diction accuracy of the GBDT on imbalanced data (in comparison
to Figure 1). Moreover, they (except the Top1 centroids’ nearest
neighbor approach) outperform the other clustering models that
we tested in Section 6.

8 RELATEDWORK
Automated data analytics with machine learning support will play
a major role in future medicine. In particular, the notion of pre-
dictive, preventive, personalized and participatory (so-called P4)
medicine – a term coined by Leroy Hood et al. [17] – is seen as a
major paradigm shift from a reactive medicine towards a proactive

medicine. Historical data of patients are valuable information in
order to assess health conditions as well as decide on further treat-
ment of the target patient. Predictions (based on historical patient
data) support doctors in identifying health risks before symptoms
become obvious and prepare an appropriate treatment in advance.
This results in better plannability of treatments and gives patients
the opportunity to prepare for times of illness. In particular, ML
methods can act as an enhancement for a Clinical Decision Support
System (CDSS). CDSSs have widely been conjectured to identify
optimal treatments when considered by experienced medical staff
as an extra source of information [25] – in addition to their personal
professional expertise.

Applications of ML in medical use cases require a high reliability
of the models. In particular, the models have to be able to handle
the class imbalance problem. The investigation of this issue is the
major focus of our work in this article. To overcome the imbal-
anced class problem we rely on the data sampling method – specifi-
cally, clustering-based under-sampling and ensemble ML. There are
many related approaches having applied the clustering-based under-
sampling technique to class-imbalanced data. We survey the most
significant of them here. Lin et al. [23] proposed a clustering-based
under-sampling method based on K-means. They set the number of
the majority class clusters equal to the minority class size. Then, the
selection of the majority class representatives follows two strate-
gies: using the cluster centers or using the nearest neighbors of the
cluster centers. Ofek et al. [27] also used the clustering approach for
under-sampling. They aim to consider both computational cost and
predictive performance. They cluster the minority class instances
then select for each cluster a similar instance number from the ma-
jority class. Tsai et al. [30] propose an integrated clustering-based
under-sampling method with instance selection algorithms. Kumar
et al. [20] use K-means clustering for under-sampling the majority
class then use C4.5 as the learning algorithm. Lin et al. [23] used
a similar clustering under-sampling approach as us (i.e., K-means
and cluster centers are the representatives of the majority class)
but they did not empower it by the ensemble ML model. Similarly,
[28] apply k-means in conjunction with kNN for text classification.
These previous researchworksmainly focus on the clustering-based
under-sampling for pre-processing the dataset; then, the learning
process from the data is done by applying ordinary ML models. The
high performance of our approach relies on the clustering-based
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under-sampling in conjunction with an ensemble ML model. In
addition, to the best of our knowledge, our approach is the first one
to comprehensively analyze the behaviour of different clustering
methods in conjunction with different ML models on the MIMIC-III
dataset.

Haixiang et al. [14] and Galar et al. [11] give a survey of the
ensemble methods that are used for imbalanced class problem. The
ensemble-based classifiers are usually combined either with data re-
sampling methods or a cost-sensitive strategy to learn from imbal-
anced data. When embedding a data pre-processing (re-sampling)
technique in an ensemble learning algorithm, each classifier in
the ensembles trained with the different (manipulated) training
set. For instance, SMOTEBoost combines SMOTE data sampling
method with boosting ensemble algorithm [4]. DYCUSBoost inte-
grates dynamic clustering and under-sampling with Adaboost [24].
In our approach (Section 4), we avoid this computational complex-
ity. Rather than including the data re-sampling in each iteration of
the ensemble model, it is performed once before applying the en-
semble model. Moreover, the achieved result – specifically, the high
prediction performance of the critical cases of patients at risk (i.e.,
the rare cases of the minority class) – is promising. In particular, in
the recent review done by Haixiang et al. [14] there are 218 papers
that proposed ensemble models for imbalanced data out from the
527 reviewed articles. The only two papers that used GBDT com-
bined it with the cost-sensitive approach. Again, to the best of our
knowledge, there is so far no other extensive research proposing
and analyzing GBDT with clustering-based under-sampling for
imbalanced data.

9 CONCLUSION AND FUTUREWORK
Imbalanced data are a severe problem that affects the Machine
Learning (ML) model performance. It causes a biased model and
biased accuracy. In this study, we aimed to predict the risk of mor-
tality on an intensive care unit (ICU) data set. The main struggle
was the imbalanced data which is a common problem of such a real-
world dataset. We proposed a method to mitigate this problem. Our
approach is based on implementing an ensemble Machine Learning
model on a balanced dataset. The balanced dataset is obtained by
K-means++ clustering-based under-sampling of the majority class
(to equalize the size of the majority class to the size of the minority
class). The centroids of the clusters are selected as representatives
of the majority class. This under-sampling method prevents losing
critical information from the dataset (which is a central problem
of the random under-sampling). The proposed approach provides
higher accuracy in comparison to its competitors. Specifically, the
hybrid between ensemble ML model and the balanced dataset sig-
nificantly improves the prediction accuracy of risk of mortality for
the patients who are truly in risk.

One limitation of this balancing method is the long run time.
We tested a new method to overcome this long run time problem.
The method is based on combining the K-means++ under-sampling
(of small k) with random under-sampling as well as with nearest-
neighbor under-sampling. These approaches with the optimized k
value still outperform the basic random under-sampling (without
clustering) and overcome the long run time problem by reducing
the execution time significantly.

Several options for further analysis and optimization arise. For
example, by applying appropriate performance optimization for
the clustering (for example parallel execution) a faster execution
could be achieved. Feature selection is another step for performance
optimization. High-dimensional data cause poor clustering perfor-
mance. Thus, selecting only the essential features for clustering
could significantly improve the performance; we will identify rele-
vant features and analyze their impact in future work. Moreover, we
analyzed different notions for the similarity or distance underlying
the clustering from a performance perspective [29, 32]. The impact
of different distancemeasures on the overall prediction performance
could be analyzed more in detail. Further planned future research,
in addition to optimizing the under-sampling approach, considers
“hybrid” re-sampling: We for example plan to combine SMOTE for
oversampling and K-means++ for under-sampling similar to [1, 7]
and identify optimal settings for our use case.
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