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Abstract 

Patients’ lives can be rescued by a prediction made by an Intelligent Medical Decision Support System 
(IMDSS). Such a system can harness the information wealth of patient Electronic Medical Records and 
leverage up-to-date Machine Learning technology. The accuracy of prediction is one of the most critical 
characteristics of this intelligent system. Moreover, the technical issues of the medical data as the curse of 
dimensionality and imbalance are significant challenges. In this paper, we implement the main building 
block of an IMDSS which is the predictive model. In addition, a comprehensive study of different accuracy 
factors of this system is given. We tested different approaches and methods for these factors to reach an 
optimal setting for system development. A big real-world medical dataset is used to test the model for 
predicting the in-hospital risk of mortality from only the first 24 hours of stays in the Intensive Care Unit. 
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Introduction 

With advanced health information technology for electronically collecting data through different sources, a 
vast amount of medical data has been available. Analyzing these data can produce useful knowledge for the 
patients and the medical staff. For this aim, an Intelligent Medical Decision Support System (IMDSS) is 
implemented. This system harnesses the information wealth of this vast amount of data to support medical 
decision making. The intelligence of this system comes from its main building block, which is a Machine 
Learning (ML) model. The ML model is trained on the medical data to learn how to predict the patient’s 
case accurately. Thus, it is unlike the most clinical decision support systems that require a knowledge base 
for decision support. In this paper, the intelligent healthcare system is used for predicting patients at risk 
in Intensive Care Units (ICUs). Sudden death is a serious problem the ICU patients suffer. Implementing 
an IMDSS for predicting the patients that are at risk of death can minimize the number of sudden deaths 
in ICUs.  

The technical issues of the medical data as the curse of dimensionality, missing values (sparsity), and class 
imbalance problems are significant challenges when implementing the system. For more details, see (Lee 
and Yoon 2017; Johnson et al. 2016). Curse of dimensionality is when high dimensional data causes many 
issues such as data sparsity, which makes the classifier decision boundaries difficult. Feature selection is 
one approach to handle high dimensional data. As stated by (Li et al. 2010): “In medical data sets, data are 
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predominately composed of “normal” samples with only a small percentage of “abnormal” ones, leading to 
the so-called class imbalance problems.”. An imbalanced real-world ICU dataset contains a majority 
percentage of the survived patients and a minority percentage of the died patients. The issue of imbalanced 
class distribution causes the classifier to be extremely biased towards the majority class and discounting 
the minority class. Nevertheless, the minority class is the class of interest. These issues are accuracy factors 
to this IMDSS. The accuracy of prediction is one of the most critical characteristics of this intelligent system. 
In this paper, we test some methods for handling these problems of imbalanced data (by data sampling) 
and high dimensionality (by feature selection). 

Different Machine Learning (ML) models can be leveraged to implement this intelligent system. The 
selection of the predictive model influences the system accuracy. Researches have been using the advances 
of ML to develop such an IMDSS for predicting the risk of mortality for ICU patients (Ghassemi et al. 2015; 
Luo et al. 2016). However, less attention has been giving to studying different accuracy factors for this 
IMDSS system. 

Implementing this system requires considerable effort and many steps and decisions. In this study, we aim 
to give a first level overview of model deployment steps for this IMDSS system. Furthermore, we provide a 
comprehensive study of different accuracy factors that affect the prediction performance of this system. 
This was done partially or ambiguously in the previous literature. For implementing this intelligent system, 
we develop different ML models and compare their performances. We aim to reach the optimal setting for 
accurate prediction. We compare the prediction performance of seven ML models such as Logistic 
Regression, Gradient Boosted Decision Tree, and K-Nearest Neighbors. The models are applied on data of 
the first 24 hours in the ICU stay to predict the in-hospital risk of death for ICU patients. A big real-world 
medical dataset is used to test the system.  

The imbalanced data affect the performance of the ML models. However, our implemented model GBDT 
had a significantly higher performance than other tested models, even on the imbalanced data without any 
optimization (area under the curve (AUC)=0.859). Moreover, it outperforms the prediction performance of 
some of the previous studies on similar versions of our used dataset (Ghassemi et al. 2015; Morid et al. 
2017; Lee et al. 2015; Luo et al. 2016). 

This paper is organized as follows. Section "Related Work" provides a survey of related approaches. Section 
"Steps for Developing the Predictive Model of the Health Predictive System" presents the process to develop 
the model for the predictive system. It includes the extraction and pre-processing of the dataset, 
implementing the ML models, and tuning the accuracy factors. Next, Section "Results" provides a 
comparative analysis of different ML models for the task at hand and choose the best-performing candidate. 
Moreover, it presents the optimal settings of model parameters and other accuracy factors. Section 
"Discussion" discusses the results we find through the proposed process. Finally, Section "Conclusion" 
concludes the paper. 

Related Work 

One approach for predicting the risk of mortality are predictive scoring systems as Simplified Acute 
Physiology Score (SAPS; Le Gall 1993), and Sequential Organ Failure Assessment score (SOFA; Vincent 
1996). However, many studies approve that they outperform their performance by using Machine Learning 
(ML) models which is another approach for predicting the risk of mortality such as by Lee et al. (2015) and 
Morid et al. (2017).  Machine learning models are utilized to enhance the accuracy of risk prediction. 

Several studies used ML models for predicting patients at risk of death, and even some compare the 
predictive performance between different ML models. However, little attention has been paid to report on 
the handling of varying accuracy factors simultaneously: model parameters, feature selection techniques, 
and treatment of imbalanced data. Lee et al. (2015) deploy Logistic Regression, Decision Tree, and death 
counting of similar patients to predict mortality for ICU patients. They find that using the data of similar 
patients as a training dataset improves prediction accuracy. No discussion or experiment take place 
regarding different data pre-processing or feature selection techniques. For instance, they only use 
normalized data to train and test the models. We compare the usage of both normalized and un-normalized 
data. Morid et al. (2017) implement a framework for ICU mortality prediction based on similarities amongst 
ICU patients’ data. Their similarity-based predictive model uses k-nearest neighbor learning. They also 
utilize feature weight adjustment (by only the wrapper approach (Gradient Descent)). 
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Stylianou et al. (2015) compare Logistic Regression against different ML models (artificial neural network, 
support vector machine, random forests, and naïve Bayes) for predicting mortality risk from a burn injury. 
They find that all the predictive models have comparable performance. The simple Logistic Regression 
model performs well in comparison to the other complex models. Allyn et al. (2017) is another work using 
ML in medical prediction, and it is outperforming the score model in mortality risk prediction. They 
compare different ML model’s performance (Logistic Regression, Gradient Boosting Machine, Random 
Forests, Support Vector Machine, Naïve Bayes) with the EuroSCORE-II to predict mortality after cardiac 
surgery. They approve that the ML models provide significantly higher accuracy than EuroSCORE-II. 
Regarding feature selection, they only use the filter approach (Chi-Squared). Hoogendoorn et al. (2016) 
also exploit the ML models for building a mortality prediction model. They compare the performance of LR 
and KNN. For feature selection, they use the Pearson correlation coefficient.   

Ghassemi et al. (2015) use Lasso logistic regression and L2 linear kernel Support Vector Machine. They also 
consider data sampling to handle imbalanced class distribution, the best AUC=0.812. Luo et al. (2016) 
implement a Logistic Regression model for mortality risk prediction and use non-negative matrix 
factorization for feature extraction. The authors aim to improve model interpretability and accuracy; their 
model had an AUC=0.848.  

Our contribution to this field is as follows. In this paper, we give a first level overview of model deployment 
steps for this IMDSS system. This study highlights the significant effect of different accuracy factors that 
have been ignored or partially searched by the previous studies. The former works implement their 
approach of accurate prediction without comparing different methods, such as for features selection or data 
pre-processing. We provide a detailed discussion on selecting the model parameters, whereas, in the 
previous studies, they made an ambiguous selection. 

Furthermore, we compare seven ML models and the two approaches (filter and wrapper) for feature 
selection. We test the different combinations between the best-selected ML models and these techniques of 
feature selection. Moreover, we shed light on the common problem of imbalanced data. Therefore, we 
provide a comprehensive study and comparisons of different approaches and factors that lead to accurate 
predictions. Consequently, we aim to deliver the optimal setting for developing a predictive model for 
IMDSS predicting patients at risk. As a result, our selected and implemented ML model GBDT provides 
substantially higher performance than models evaluated on similar versions of the publicly available dataset 
MIMIC reported in the literature (Ghassemi et al. 2015; Morid et al. 2017; Lee et al. 2015; Luo et al. 2016). 
In our analysis, GBDT achieved an AUC of 0.859 (with the imbalanced data). Lee et al. (2015) have the same 
selected features as us (except we excluded two features), and the best produced AUC is 0.830. Morid et al. 
(2017) have 0.66 F-measure, while GBDT made a higher F-measure 0.78. Furthermore, with another 
dataset Allyn et al. (2017) reached an AUC of 0.795. 

Steps for Developing the Predictive Model of the Health Predictive System 

To develop an accurate medical DSS, significant and critical works have to be done in developing the 
predictive model. Developing the predictive model for such an intelligent system has many steps starting 
from patient data extraction and ending when an optimal model with high accuracy is defined. Figure 1 
gives an overview of this process, which inspired by the typical ML pipeline or workflow. 

The process in Figure 1 is as follows: The patient data are extracted from the Electronic Medical Record 
(EMR) database in the form of vectors and features. Data of each patient are collected in a vector. The 
features consist for example of vital signs or laboratory measurements. These medical data are often messy 
and contain many problems that have to be solved to make the data ready to be used by the models (Malley 
et al. 2016). Messiness in this sense can occur in the form of noisy (e.g. outlier values), incomplete (e.g. 
missing values), and inconsistent (e.g. errors made at data entry) data. An important step is hence to apply 
data pre-processing. Then, different ML models are implemented and tested to find the best one. Different 
factors affect the accuracy of this system: for instance, the model parameters, the selected features, and the 
data format. These factors are tuned, and simultaneously the model training and testing processes are 
repeated. Once an optimal setting of a different combination of the model and parameters values of the 
different factors is found the process is accomplished. This ideal model and parameters are used to develop 
the DSS. In the following subsections, we will go through the main steps with the different approaches. 
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Figure 1.  Developing the Predictive Model of the Health Decision Support System 

Data Extraction 

For health prediction purposes various medical data has to be extracted and analyzed. The selection of the 
medical measurements is based on the intention of the prediction. For instance, for diagnoses prediction, 
the feature selection depends on the disease we are looking to diagnose. In this paper, we use the real-world 
critical care database Medical Information Mart for Intensive Care (MIMIC) (Johnson 2016). The data is 
collected from patients admitted to critical care units at the Beth Israel Deaconess Medical Center in Boston, 
Massachusetts in June 2001 to October 2012. It is a publicly available, widely used, and de-identified 
dataset. We use the latest version of MIMIC which is MIMIC-III. MIMIC-III comprises over 61,000 hospital 
admissions to critical care units of 53,423 adult admissions and 7870 neonate admissions with thousands 
of medical data. 

MIMIC-III was collected from different sources: archives from critical care information systems, hospital 
electronic health record databases, and Social Security Administration Death Master File. It includes the 
clinical data of critical care. These data include the time-stamped hourly collected physiological 
measurements as heart rate and other notes and medication data. Moreover, it includes demographic data 
and in-hospital mortality, laboratory results, and discharge report.  

In our study, we are interested in predicting the risk of mortality for the adult patient (aged 15 years or 
above). Thus, only the data of the adult patient admissions to the different critical care units are extracted. 
The data of the neonate admissions are not included. The medical measurements (the predictor variables) 
selection is inspired by Lee et al. (2015). There are 74 predictive variables from the first 24 hours in the ICU 
stay (see Table 1). Furthermore, age, gender, and ICD-9 code were also extracted.  

Predictor variables 
Feature 
extracted 

Time window 

Vital signs (heart rate, mean blood 
pressure, systolic blood pressure, Spo2, 
body temperature, and spontaneous 
respiratory rate) 

Min and 
Max  

From each non-overlapping 6-hour 
period during the first 24 hours 

Lab variables (blood urea nitrogen, 
hematocrit, white blood cell count, serum 
glucose, serum HCO3, serum potassium, 
serum sodium, and serum creatinine.) 

Min and 
Max  

From the first 24 hours 

EMR 
Database

Extract Patient
Records

- Cleaning.

- Normalizing.

- Features 

extraction.

Vectors 

& 

Features

Data 
Preprocessing

Implement 
Predictive Model 

Find the Optimal 
Setting for High 

Accuracy

Tuning the 
Accuracy 

Factors

- Model 
parameters.

- Data Pre-
processing and 

solving the 

problems.
- Features 

weight & 
selection.

- LR

- DT

- GBDT

- KNN

Re- Train and 

Test the 

models.



 Medical Decision Support System for predicting Patients at Risk 
  

2019 Pre-ICIS SIGDSA Symposium on Inspiring mindset for Innovation with Business Analytics and Data Science, 
Munich 2019 5 

Categorical variables (use of mechanical 
ventilation, receipt of vasopressor therapy) 

Binary From the first 24 hours 

Glasgow Coma Scale Min From each non-overlapping 6-hour 
period during the first 24 hours 

Urinary output Sum From each non-overlapping 6-hour 
period during the first 24 hours 

Table 1. Feature Extracted from the Predictor Variables 

The value that we want the model to predict is if the patient has a risk of in-hospital mortality. Thus, the 
value of the in-hospital mortality flag is also extracted from MIMIC for test purpose. As a result, these 
extracted data can help us build the model to predict the risk of in-hospital mortality after the first 24 hours 
of ICU stay. 

Data Pre-processing 

Medical measurements are collected by numerous sources. This produces big and messy data collections. 
From the previous dataset description and extraction, we can imagine how diverse the medical data is. It is 
collected from different sources and systems with different formats and problems such as missing values. 
A real-world dataset usually is not ready for directly applying Machine Learning models. It has to be pre-
processed and cleaned.  Therefore, the pre-processing step is one of the main steps in developing the 
predictive model. Consider the dataset used in training and testing the model as a critical accuracy factor; 
data pre-processing should be done with caution. 

The patient data of n patients with m features are represented in an m-dimensional vector space: The 
patient vectors N = P1, P2, . . . , Pn each consist of features x1, x2, . . . , xm (see Table 2). Thus, m is the size 
of the feature set, while n is the size of the patient set. 

PatientID Feature1 Feature2 .  .  .  .  .  . Feature𝑚 

1 value1 value2 .  .  .  .  .  . value𝑚 

. . . . . 

. . . . . 

n value1 value2 .  .  .  .  .  . value𝑚 

Table 2. The Patient Data Layout 

The data should be clean. All the patient records with null values in any measures are excluded. The final 
dataset that met our criteria and without missing values is 32,548 patients. The 74 extracted medical 
measurements have multiple ranges and units. Some ML models require normalizing or scaling the data as 
for example KNN. Moreover, the predictor variables with different ranges will have different weight. 
Therefore, we normalize the data into a scale of smaller range. All the predictors are normalized into the 
range [0, 1] by computing this formula of min-max normalization to the features (Han et al. 2011): 

x’
 
=  

x 
 
−  minx

maxx  −  minx 
 . ( maxnew  −  minnew )  +  minnew 

In this equation, the feature or the predictor variable x has a range with the minimum value (minx) and the 
maximum value (maxx) is normalized to a new range with the minimum value (minnew) and the maximum 
value (maxnew) to produce the new value x’. 

Implement Machine Learning models for Prediction 

Machine learning models are utilized to enhance the accuracy of risk prediction. Different models can be 
used in the predictive analysis for medical data. Predicting risk of mortality can be seen as a classification 
task. It is a binary classifier for two classes either a patient has a death risk (the positive class with the label 
''1''), or a patient has no risk of death (the negative class with the label ''0''). Several supervised learning 
algorithms can be employed for this task. The developed medical DSS will need one predicative model as a 
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main building block. There is no such a superior model that works best for all the purposes. The models 
work differently with different situations. Therefore, the selection between the models happens after 
comparing their performances in the aimed prediction. Then, select the one with the highest accuracy. In 
this paper, we select some of the commonly used models (as mentioned in the Related Work section) and 
compare their performance in predicting the risk of mortality in our dataset. The models we compare are 
Logistic Regression (LR), Decision Tree (DT), K-nearest neighbor (K-NN), Naïve Bayes (NB), Gradient 
Boosting Decision Tree (GBDT), Support Vector Machine (SVM), and Random Forests. We test the models 
on the complete dataset of 32,548 patients by 10-fold cross validation. We set the models’ parameters to 
the default values. We compare their performance by the AUC (see Figure 2) to select an initial group of 
models for further tests. The value of  AUC=0.5 indicates a random guesses predictor, while the higher value 
of the AUC indicates better model discrimination. 

 

Figure 2.  Compare the AUC Performance of different ML Models 

The model performance can be measured by different accuracy metrics such as Accuracy, Recall, Precision, 
F-Measure, AUC. We will explain some of these metrics and what they mean in our study content. In our 
classifier we have two classes to predict: the positive class (the class of interest, i.e. the patient with risk of 
mortality) and the negative class (the survived patient). First, we need to know the output of our classifier 
which are True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). A TP is a 
patient who is truly predicted to be in risk, FP is a patient who is incorrectly predicted to be in risk, TN is a 
patient who is correctly predicted as survived, and FN a patient that is incorrectly predicted as survived. 

 Accuracy: is the ratio of the total true predictions (for both the patients with mortality risk (TP) and 
survived patients (TN)) to the all predictions made by the model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 Recall: is also called the True Positive Rate (TPR) and the Sensitivity. It is a fraction of the patients 
that are correctly predicted with risk over all the patients who have the risk. It measures the 
efficiency of the model of predicting the entire group of patients with risk of mortality. This formula 
calculates it: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 Precision: for our model, it is the fraction of the patients who are truly predicted with mortality risk 
over all the patients that are predicted with mortality risk. The higher the precision is, the lower the 
number of incorrectly predicted patient with risk. This formula calculates it: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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 F-Measure: is the f1 score that combines the Precision and the Recall to give an average of them. As 
a result, this metric measures the efficiency of the predictive model for predicting both the patient 
with mortality risk and without risk.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

 AUC: Area Under the ROC Curve (AUC). First, the ROC graph shows the model performance at all 
classification thresholds by plotting the relation between TPR and FPR. The AUC aggregates the 
performance among all the classification thresholds. The FPR is the ratio FPR= FP/FP+TN. 

A tradeoff occurs between accuracy metrics such as between Recall and Precision. Thus, we should consider 
which of the evaluation metric is the most worth for our predictive model. We mostly care to correctly 
predict the patients with mortality risk (i.e., TP). Moreover, a low number of FNs is more crucial than a low 
number of FPs. A high Recall has a high priority for our system. 

We select the models that have an excellent performance in Figure 2 for further analysis. The models that 
had the highest AUC values are GBDT, LR, Naïve Bayes, and KNN. However, even though Naïve Bayes gives 
a good AUC of 0.729 (from Figure 2), its accuracy was low 29.77%. Thus, we do not include it for further 
tests. We include DT instead. In the following section of “Results,” we will compare the models’ performance 
in detail with other metrics. As a result, we will find the best model for our intended prediction. 

Tuning the Accuracy Factors 

Brink et al. (2017) mentioned three techniques for achieving better model accuracy: tuning the model 
parameters, selecting a subset of features, and pre-processing the data. We applied these three steps as 
follows. 

Tuning the Model Parameters 

Each of the used Machine Learning models is configured by specific parameters. These tuning parameters 
control how the algorithm uses training data to build a model. There are no standard best values of these 
model parameters. In general, the optimal value of these parameters is entirely dependent on the type, and 
the structure of the used dataset and on the problem that needs to be solved. The parameter values impact 
the predictive performance of the model. Thus, we should do cautiously selecting. 

We study the critical parameters of each of the selected ML models. We test the effect of those parameters 
on the model performance. Furthermore, we implement Grid Search to find the optimal values of the 
parameters for our used case. Here are the crucial parameters we test for the models: 

For LR the main parameter is the regularization parameter. Assigning a small value to the regularization 
parameter develops a simple model. LR can be prone to over-fitting with high dimensional feature spaces. 
Regularization gives a more reasonable decision boundary (for separating the positive and negative 
samples) that prevent over-fitting. It is penalizing the parameters from being too large. 

DT’s parameters that affect the performance are splitting criterion, max depth of the tree, and minimum 
samples needed to do a split. Splitting criterion selects the criterion on which attributes will be selected for 
splitting. The split value is optimized with regards to the chosen criterion: Gain Ratio, Information Gain, or 
Gini Index. 

GBDT parameters: the more complex the algorithm is, the more numerous the tuning parameters are. In 
our case, the GBDT model is the one that has the largest number of tuning parameters. The critical 
parameters of GBDT are the number of trees, max depth of the tree, learning rate, splitting criterion, and 
minimum samples needed to make a split. Hence the GBDT is built out of ensemble DTs; the parameters 
are mainly similar. However, it has two other parameters which are the main parameters – number of trees 
and learning rate. The learning rate is the degree of mistakes correction that each tree is allowed to do of 
the previous trees. These two main parameters have an inverse relationship — the lower the learning rate, 
the larger number of learning trees that are needed to build a model. The maximum depth is usually set to 
very low to reduce the complexity of each tree, often not deeper than five splits. 
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KNN parameters: The critical key choices that affect the KNN performance are the value of k nearest 
neighbor, the approach to combine the class labels and the choice of distance metric. The approach to 
combine the class labels is the way to decide the predicted class label. 

Selecting a Subset of Features 

In the big data age, it is common that the used dataset for prediction is high dimensional. A large number 
of features might include a noise that causes difficult knowledge discovery and makes it hard to find such 
relevant indicators from the data. A high dimensional dataset not only slows down the training process but 
also makes finding the optimal solution harder. Thus, dimensionality reduction has to come into play.  It is 
not obvious to know the effect of the features on the model. Therefore, we should carefully search for the 
features that build the most general and accurate model.  

Dimensionality Reduction reduces the noise and removes the unnecessary details in the data which produce 
higher performance. However, it is not the general case, since it commonly only speeds up the training 
(Géron 2017). Therefore, by reducing the dimensionality, we should make sure not to lose much 
information. We test two approaches for feature selection: the wrapper approach and the filter approach; 
see Guyon et al. (2003) and Kaushik (2016). The wrapper method wraps a machine learning model inside 
it as a black box to evaluate a subset of the features. The ML model is trained on the feature subset, and it 
scores them according to their predictor power. On the other hand, the filter method selects the features 
independently of the learning machine. It selects the features based on a statistical score about their 
correlation to the predicted value. From the filter approach we test the Chi-squared. From the wrapper 
approach we test these two methods: Forward Selection, and Backward Elimination; see Kohavi et al. (1997) 
and Panthong et al. (2015): 

 The backward elimination is searching for the features by beginning with the full set of the features 
and removing one feature at a time. With each deletion of the feature, the model performance is 
evaluated. The feature that gives the lowest performance decrease it will be deleted. This process 
continues until a decrease in model performance occurs. 

 The forward selection begins with an empty set of features and then adds one feature at a time. 
With each addition of a feature, the performance is estimated by cross validation. Only the feature 
that by its inclusion gives a high performance improvement is added to the selected list. It adds the 
feature that gives the highest increase of the model performance. The iteration is stopped when no 
increase in the model performance occurs. 

Pre-processing the Data 

The problems that a dataset contains affect the performance of the ML models. Thus, we explore our dataset 
and visualize it and do some statistical overviews to find the data issues. The main issue of our dataset is 
imbalanced classes. Our used dataset of MIMIC-III includes 28,887 alive patients and only 3,661 dead 
patients. The ratio of Class-1 (survived patient) instances to Class-2 (died patient) instances is 89:11. We 
test our models with a balanced dataset to test their performance without any data issue effects. 

Different feature value range will have different weight. Therefore, normalizing features to a specific range 
make sure all features are considered equally. We normalized all of our predictive variables to the range 
from 0 and 1. However, to find the best for optimizing the predictive performance of our system, we also 
test the un-normalized data. 

Results 

The complete 26 tables of the MIMIC-III dataset were installed and were queried by a Structured Query 
Language (SQL) statement to extract the predictor variables. All the data pre-processing and model’s 
implementation, training, and testing were done by RapidMiner studio version 9.2 Educational edition. 
RapidMiner is called a leader by Gartner in Gartner’s 2019 Magic Quadrant for Data Science and Machine 
Learning Platforms for Sixth Consecutive Year (Idoine et al. 2019). The computation takes place in 
Windows 10, Intel i5-7300U, CPU 2.70 GHz, RAM 32 GB, x64-based processor.  

The Optimal Model Parameters 
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We discover the critical parameters of each model. Then, we test different values of the models’ parameters. 
For all of the models, we use Grid Search to find the optimal parameters values that give high accuracy. For 
instance, the KNN crucial parameters are the value of k (the number of the nearest neighbors), the distance 
metric, and the approach to combine the class labels. We test values for k from 1 to 50. We find that k=21 is 
the optimal value with high accuracy. Moreover, we test the distance metric parameter with 10-fold cross 
validation. We compare various distance metrics but all with the same k. In this example we test k=21. From 
Figure 3 we can see the different AUC performance the KNN model has with different distance metrics. 

 

Figure 3.  KNN Model with different Distance Metrics 

The last parameter we test for KNN is the approach to combine the class labels. We compare two different 
approaches: the majority vote and the weighted vote — the accuracy of the two approaches was the same 
with 86.96%. However, looking more in detail into the performance result we find that differences were in 
AUC and the Precision and Recall of predicting the positive class (i.e., predicting mortality). The majority 
vote gives AUC of 0.770 and 72.13% precision and 1.03% recall. The weighted vote improves the 
performance where it gives 0.772 AUC and 1.28% recall but lowers the precision 68.75%. This is caused by 
the mentioned problem we have in our dataset (imbalanced class distribution). The class label that 
commonly occurs will affect the predicted value. In our dataset, the survived patient class is the common 
one. Thus, using the majority vote with larger k values is not a good choice in our case.  

For LR the regularization parameter is called lambda which controls the amount of the applied 
regularization. We search for the best fit lambda value. Lambda of zero gives the highest AUC 0.801 +/- 
0.011.  

For the DT, we test the three splitting criterion approaches: gain ratio, information gain, and the Gini index. 
The max depth of the tree was fixed to be 20. We find that the gain ratio gives the highest accuracy of 88.76% 
among the other splitting criteria. Furthermore, we test the max depth of the tree from a range of 1 until 
100 with ten steps linear scale. The splitting criterion was set to gain ratio. Max depth of 41 has the highest 
accuracy of 88.80%. Finally, we test the minimum samples needed to do a split. The range is from 1 to 100 
with ten steps in a linear scale. The splitting criterion is set to gain ratio and the max depth to 41 which are 
the optimal values we found in the previous tests. The minimum samples size of 11 produces the highest 
accuracy of 88.84%.  

For GBDT, we test both the number of learning trees and learning rate. All the combinations between the 
learning rate from 0.1 to 1.0 and the number of trees from 1 to 200 are tested. There are 11 variations for 
the learning rate and 11 variations for the learning trees. Each combination is tested by 10-fold cross-
validation. The result is that 11*11*10=1210 models are trained and evaluated. The other parameters are set 
to be the same for all the 10-fold cross validation iterations. The maximum depth of the tree was 5. The 
optimal result is reached with the learning rate of 0.1 and with the number of trees equals to 200. This gives 
accuracy 88.94% and AUC 0.860 +/- 0.007. Figure 4 shows the accuracy of the different number of trees 
with the range of learning rate. However, the accuracy of the learning rate of 0.19 where the number of trees 
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equals 160 is almost similar to the best one. In general, low learning rates cause fewer corrections for each 
tree added to the model. Therefore, the smaller the learning rates is, the more trees are required to be added 
to the model. Moreover, the small max depth of the tree can affect this need for more learning trees.   

 

Figure 4.  Testing Different Learning Rate with Different Number of Trees of 

the GBDT Model 

In the following tests of performance optimization, we will use the optimal parameters values we found by 
Grid Search. 

The Best ML Model 

We test the initial model group further to select the best model for our system. We set the models' 
parameters values to the optimal values we found. Then, we test the models by 10-fold cross-validation. We 
compare the accuracy of the four models (LR, DT, GBDT, and KNN) on the normalized data. All the models 
have high accuracy and almost the same value. This suspicious result leads us to look at other performance 
metrics. Table 3 gives a comparison of the four models. 

 Accuracy AUC Precision Recall 

LR 89.22% 0.801 58.63% 13.41% 

DT 88.82% 0.500 70.00% 0.57% 

GBDT 88.78% 0.859 50.08% 41.82% 

KNN 88.90% 0.768 63.73% 2.43% 

Table 3. Compare Models Performance 

From Table 3, we find that the models were successful in predicting survival cases rather than the death 
cases. The high predictive accuracy was a sign for overall prediction of the majority class which is the 
survived case. Thus, we should consider other metrics in evaluating our model besides the accuracy. Even 
though the models have high accuracy, they have a very low Recall (that measures how often a positive class 
instance is truly predicted as a positive one). It is incredibly distinct in DT and KNN. Out of the box without 
any further optimization and with the imbalanced problem, the GBDT and LR give the highest performance 
(AUC and Recall). Therefore, we select them for the following tests. 

Pre-processing the Data and Selecting a Subset of Features 

One of the data pre-processing decisions to select is normalizing the data to a specific range or not. We 
compare the two approaches (The un-normalized dataset as the original one and the normalized dataset 
except the ICD-9 code) with the two models LR and GBDT.  We find that the data with normalized features 



 Medical Decision Support System for predicting Patients at Risk 
  

2019 Pre-ICIS SIGDSA Symposium on Inspiring mindset for Innovation with Business Analytics and Data Science, 
Munich 2019 11 

(except the ICD-9 codes) gives a higher Recall than the data of unnormalized features. For instance, by 
GBDT the normalized data except the ICD-9 codes gives 45.77% Recall, but all normalized features (as 
shown in Table 4) give 41.82%. Thus, we use the data with all normalized features except the ICD-9. The 
results are shown in Table 4. The normalized data slightly improves the Recall and the F-measure. However, 
there are no significant differences. The reason might be that these models do not require feature scaling. 
Thus, scaling or not scaling makes no such difference. However, with the model that requires scaling such 
as KNN, the normalizing would affect the accuracy. 

 Accuracy Precision Recall F-Measure 

LR+Udata 89.21% 58.53% 13.25% 21.59% 

LR+Ndata 89.22% 58.52% 13.34% 21.70% 

GBDT+Udata 88.53% 48.94% 43.87% 46.17% 

GBDT+Ndata 88.41% 48.46% 45.77% 46.99% 

Table 4. Compare Models Performance with Un-normalized Dataset and with 

Normalized Dataset 

We apply feature selection approaches (wrapper and filter) on both LR and GBDT. First, regarding the 
wrapper approach we test the Forward Selection (FS) and the Backward Elimination (BE) on LR and GBDT. 
Then, from the filter approach, we test feature selection weight by Chi-Squared (Chi). Chi-Squared weights 
all the 74 features and then only the features with the top 20 weight are selected (see Table 5). All the tests 
were on the normalized data (except the ICD-9 code). We compare the three approaches on each model.  

Feature  Weight 

Blood urea nitrogen_min 1206.72 

Blood urea nitrogen_max 1109.48 

Serum HCO3_min 979.23 

Serum HCO3_max  765.85 

Spontaneous respiratory rate_18h_min 650.84 

Spontaneous respiratory rate_12h_min  641.34 

Sodium_max  609.99 

ICD-9 code 582.77 

Spontaneous respiratory rate_6h_min 571.23 

Spontaneous respiratory rate_24h_min  561.54 

Systolic blood pressure_24h_min 547.43 

Heart rate_24h_max 506.01 

Age 465.82 

Heart rate_24h_min 430.77 

Spo2_24h_min 418.36 

Glasgow Coma Scale_min 392.76 

Systolic blood pressure_18h_min 342.89 

Heart rate_18h_max 336.49 

Systolic blood pressure_6h_min 327.11 

Use of mechanical ventilation 320.33 

Table 5.  Top-20 Features Weight by Chi-Squared 
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The result of comparing the three methods of feature selection on LR in Figure 5. LR with FS selects 17 
attributes: total-urinary-output_18h, total-urinary-output_24h, mean-blood-pressure_12h_max, 
rr_24h_max, mean-blood-pressure_12h_min, mean-blood-pressure_24h_min, spontaneous-respiratory-
rate_12h_min, systolic-blood-pressure_24h_min, spo2_12h_min, spo2_24h_min, body-
temperature_6h_min, glucose_max, HCO3_min, blood-urea-nitrogen_min, age, use-of-mechanical-
ventilation, and Glasgow-Coma-Scale_min. It has AUC of 0.778 +/- 0.013.  

 

Figure 5.  LR and Feature Selection Methods 

The result of the three feature selection methods with GBDT is in Figure 6. The GBDT with FS selects 8 
attributes: total-urinary-output_18h, total-urinary-output_24h, spontaneous-respiratory-rate_18h_max, 
hr_24h_min, mean-blood-pressure_18h_min, systolic-blood-pressure_6h_min, blood-urea-
nitrogen_min, and serum-creatinine_min. The AUC is 0.752 +/- 0.015. LR takes much less time than 
GBDT. 

Next, we tested the Backward elimination approach for LR and GBDT. The LR eliminates 6 attributes: total-
urinary-output_24h, heart-rate_18h_max, spo2_12h_max, body-temperature_24h_min, sodium_max, 
and ICD-9_code. It produces AUC of 0.798 +/- 0.010. GBDT eliminates only one attribute: heart-
rate_6h_max with AUC of 0.859 +/- 0.006. This test takes 5 hours and 33 minutes for GBDT and 1 hour 
and 37 minutes for LR. 

By the Chi-squared we select the top 20 features; then we use the dataset with only these 20 features to test 
the models. GBDT gives AUC of 0.845 +/- 0.007 and LR gives AUC of 0.768 +/- 0.011. Chi-squared with 
LR gives the worst Recall and Precision. Chi-squared with GBDT gives Recall almost similar to the one of 
BE and Precision lower than BE, while in comparison to FS the chi-squared with GBDT is much better. 

 

Figure 6.  GBDT and Feature Selection Methods 

At the end of implementing feature selection methods, we are still not able to achieve high predictive 
performance. The highest Recall we got is 44.43 of GBDT with Chi-squared. In comparison to the Recall 
GBDT has without feature selection 41.82 it is only improved by 5.83%. Moreover, for LR the improvement 
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in Recall is only by 4.45%. This low-performance improvement in predicting the critical cases are due to 
the imbalanced data we have. 

Therefore, we test the models’ accuracy without the effect of the imbalanced problem. Thus, we sampled 
the dataset to a balanced one. This balanced dataset has a 1:1 ratio of the two classes. We select all the 
instances of the minority class and we randomly select from the majority class the same instance number 
of the minority class. This sampling is considered to be a random under-sampling of the majority class. We 
test the effect of balancing the classes on the GBDT. Thus, we compare the GBDT performance with the 
original data (imbalanced data) and with the balanced data. In both cases, the data contains all normalized 
features. The result is summarized in Figure 7. We find that the balanced dataset significantly improves 
Precision, Recall, and F-Measure. We ignore the accuracy because we know that the accuracy of the 
imbalanced dataset is skewed (because of the problem of bias accuracy to the majority class which has 
higher occurrence). 

 

Figure 7.  GBDT with The Balanced Dataset and with 

The Imbalanced Dataset 

We test the effect of balancing the classes on the LR. Thus, we compare the LR performance with the original 
data (imbalanced data) and with the balanced data. The result in Figure 8. The Precision, Recall, and F-
Measure is improved and again the accuracy of the imbalanced dataset is a skewed one. The LR performance 
is much better with the balanced dataset. However, the GBDT outperforms the LR. For instance, with the 
balanced dataset, the GBDT’s Recall is higher than the LR’s Recall by 10%, the Precision higher by 5% and 
the F-Measure higher by 7.46%. 

 

Figure 8.  LR with The Balanced Dataset and with The 

Imbalanced Dataset 

Discussion 

Through the process of finding the optimal settings to develop the model of predicting patients at risk, we 
got to interesting findings. GBDT and LR outperform the other models we compare (DT, KNN, Naïve Bayes, 
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SVM, and Random Forests). Tuning different accuracy factors affect model prediction accuracy. However, 
the imbalanced class distribution problem has a significant impact on model performance.  

This problem of imbalanced class distribution causes the classifier to be extremely biased towards the 
majority class (i.e., the survived patient). As a result, the models' high accuracy was obtained by predicting 
all instances as a majority class. Thus, it is the model accuracy in predicting most of the dominant class 
instances and discounting the accuracy in predicting the minority class ones. Nevertheless, the minority 
class (i.e., the passed-out patient) is a positive class, which is the class of interest (i.e., we focus on predicting 
this class). This situation where the higher accuracy metric is not an indicator of an excellent classifier 
performance is called Accuracy Paradox (Valverde-Albacete et al. 2014). It is paradoxical when accuracy is 
not a useful metric for the predictive model. With this problem, we should consider other metrics in 
evaluating our model besides the accuracy. Furthermore, imbalanced data affect accuracy factors, such as 
the selection of the optimal model parameters. For example, In the KNN model, the weighted vote gives 
higher performance than the majority vote because of the imbalanced problem. Table 6 summarizes the 
weaknesses and strengths of the different approaches we test with GBDT and LR. 

 LR GBDT 

Un-normalized vs. 
Normalized data 

Normalized data improves the 
Recall and the F-measure. 

Normalized data improves the 
Recall and the F-measure. 

Forward Selection AUC=0.778 

+ less time. 

AUC=0.752 

- long time. 

Backward Elimination AUC=0.798 

+ less time. 

-lower accuracy. 

AUC=0.859 

- long time. 

+higher accuracy. 

Chi-Squared (Top 20) AUC=0.768 AUC=0.845 

Balanced data Improves all the accuracy 
measures comparing to 
imbalanced data. 

Improves all the accuracy 
measures comparing to 
imbalanced data. 

+outperforms LR. 

Table 6. Different Approaches with Strengths (+) and Weaknesses (-) 

From the previous tests of feature selection methods on both models (GBDT and LR), we find these results: 
in general, GBDT has higher Recall and Precision in Backward Elimination in comparison to the Forward 
Selection. However, Forward Selection uses only seven attributes, while Backward elimination uses the 
original large number of features minus one attribute. Similarly, the LR has higher Recall and Precision in 
Backward Elimination than in Forward Selection. Therefore, the Backward Elimination gives high Recall 
and Precision and in reasonable computation time but needs a higher dimensional feature space while 
Forward Selection uses really few features but needs high computation time and gives good Recall and 
Precision. Here we see a tradeoff between the number of features and the prediction accuracy. Furthermore, 
we find that the models work differently with different features (Das 2001). It is not only the used features, 
or the data format or feature selection method that affects the prediction performance but also the model 
itself. The GBDT model achieves the best prediction performance among all models. 

Even though feature selection can improve the prediction accuracy, the improvement is little because of the 
imbalanced data. We find that a balanced dataset has a remarkable accuracy improvement. Consequently, 
implementing feature selection on a balanced dataset will have higher accuracy than on an imbalanced 
dataset. Moreover, the balanced dataset will affect the selection of the features.   

Conclusion 

An Intelligent Medical Decision Support System (IMDSS) may save patients’ lives by predicting the risk of 
death. Implementing this system requires much effort accompanied by cautious selection and configuration 
of technologies. The main building block of this system is the predictive model, which is a Machine Learning 
(ML) model. This paper gives an overview of the main steps of model deployment and data pre-processing 
that are required to build an IMDSS for predicting the risk of death. Prediction accuracy is a crucial 
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requirement for this system that determines the system’s usefulness. Thus, we studied different accuracy 
factors that affect the system’s prediction accuracy. We tested different ML models, feature selection 
methods, and pre-processing data approaches. We aim to reach the optimal setting for accurate prediction.  

We find that the imbalanced class distribution problem has a significant impact on the performance of the 
ML models. Out of the seven ML models we tested, GBDT has an outstanding predictive performance even 
on the imbalanced data. Moreover, it resulted in higher AUC and F-measure than those reported by the 
related work. We however note that comparability of results with related work is limited, because they used 
an older (and smaller) version of the dataset. So far, we tested our model only on one dataset. Thus, using 
other datasets for verifying our model performance should be considered. We got notable accuracy 
improvement results from applying a balancing approach to solve the problem of imbalanced data. 
Therefore, testing different methods for solving the problem of imbalanced classes for this system is a topic 
of future work. In this paper, we implement random under-sampling. We plan to implement other under-
sampling methods and a hybrid approach with over-sampling. 
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